Enterobacter cowanii | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Pseudomonadota |
Class: | Gammaproteobacteria |
Order: | Enterobacterales |
Family: | Enterobacteriaceae |
Genus: | Enterobacter |
Species: | E. cowanii |
Binomial name | |
Enterobacter cowanii Inoue et al. 2001 | |
Enterobacter cowanii is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium of the genus Enterobacter . The species is typically associated with natural environments and is found in soil, water, and sewage. [1] E. cowanii is associated with plant pathogens that exhibit symptoms of severe defoliation and plant death. [2] This species, originally referred to as NIH Group 42, was first proposed in 2000 as a potential member of the family Enterobacteriaceae. [3] The name of this species honors S. T. Cowan, an English bacteriologist, for his significant contributions to the field of bacterial taxonomy. [3]
Enterobacter cowanii is phenotypically defined as being a Gram-negative, motile, and facultative anaerobic bacterium. The morphology of this bacterium is described as being cream colored when cultured on non-selective, YDC (Yeast extract-dextrose-CaCO3) medium. [2] When tested for enzyme production, E. cowanii is asparagine and catalase positive, while also being urease and oxidase negative. [2] When originally introduced as NIH Group 42, seventy traditional phenotypic characteristics were determined and listed by Kohaku et al. [3]
The diversity of strains present in the Enterobacter cowanii species have been confirmed through analysis of DNA G+C content and DNA-DNA Hybridization results, which involves the hybridizing (annealing) of putative strains to E. cowanii LMG 23569T. [1] A DNA similarity of 70% or greater indicates that strains of interest are the same species. [4] When testing for DNA-DNA similarity comparing the rpoB gene of E. cowanii, the strains BCC 009, BCC 011, BCC 078 showed 76% to 92% DNA similarity. [1]
N.B. Using a multilocus sequence analysis (MLSA) approach, based on partial sequencing of protein-encoding genes (gyrB, rpoB, infB and atpD), this species has been reclassified to the genus Kosakonia, so that its name is more properly given as Kosakonia cowanii. [5]
Isolates of Enterobacter cowanii were extracted from leaf tissue of the Eucalyptus trees. [1] To determine the overall relatedness of the isolated strains, 16S rRNA gene sequencing was utilized. [1] The 16S rRNA gene is commonly implemented for sequencing and inferring relatedness of isolates, because it is highly conserved. Phylogenetically related strains of E. cowanii, determined through 16S rRNA gene sequencing and rpoB gene sequencing, include BCC 078, BCC 074, BCC 008, BCC 011 and BCC 009. [1]
When comparing the DNA from a representative strain of NIH Group 42 and DNA from 35 other species of Enterobacteriaceae by DNA-DNA hybridization, it was found that the degree of reassociation ranged from 5–38% at 70 °C. [3] Because of its unique phenotypic characteristics and its distinct separation from other species of Enterobacteriaceae by DNA hybridization, there is sufficient evidence that constitutes E. cowanii a separate species in the family Enterobacteriaceae. [3]
Enterobacteriaceae is a large family of Gram-negative bacteria. It includes over 30 genera and more than 100 species. Its classification above the level of family is still a subject of debate, but one classification places it in the order Enterobacterales of the class Gammaproteobacteria in the phylum Pseudomonadota. In 2016, the description and members of this family were emended based on comparative genomic analyses by Adeolu et al.
Acetobacter is a genus of acetic acid bacteria. Acetic acid bacteria are characterized by the ability to convert ethanol to acetic acid in the presence of oxygen. Of these, the genus Acetobacter is distinguished by the ability to oxidize lactate and acetate into carbon dioxide and water. Bacteria of the genus Acetobacter have been isolated from industrial vinegar fermentation processes and are frequently used as fermentation starter cultures.
Enterobacterales is an order of Gram-negative, non-spore forming, facultatively anaerobic, rod-shaped bacteria with the class Gammaproteobacteria. The type genus of this order is Enterobacter.
Multilocus sequence typing (MLST) is a technique in molecular biology for the typing of multiple loci, using DNA sequences of internal fragments of multiple housekeeping genes to characterize isolates of microbial species.
Bacillus safensis is a Gram-positive, spore-forming, and rod bacterium, originally isolated from a spacecraft in Florida and California. B. safensis could have possibly been transported to the planet Mars on spacecraft Opportunity and Spirit in 2004. There are several known strains of this bacterium, all of which belong to the Bacillota phylum of Bacteria. This bacterium also belongs to the large, pervasive genus Bacillus. B. safensis is an aerobic chemoheterotroph and is highly resistant to salt and UV radiation. B. safensis affects plant growth, since it is a powerful plant hormone producer, and it also acts as a plant growth-promoting rhizobacteria, enhancing plant growth after root colonization. Strain B. safensis JPL-MERTA-8-2 is the only bacterial strain shown to grow noticeably faster in micro-gravity environments than on the Earth surface.
Pantoea is a genus of Gram-negative bacteria of the family Erwiniaceae, recently separated from the genus Enterobacter. This genus includes at least 20 species. Pantoea bacteria are yellow pigmented, ferment lactose, are motile, and form mucoid colonies. Some species show quorum sensing ability that could drive different gene expression, hence controlling certain physiological activities. Levan polysaccharide produced by Pantoea agglomerans ZMR7 was reported to decrease the viability of rhabdomyosarcoma (RD) and breast cancer (MDA) cells compared with untreated cancer cells. In addition, it has high antiparasitic activity against the promastigote of Leishmania tropica.
Fusobacterium polymorphum is a subspecies strain of the anaerobic, Gram-negative bacterium, Fusobacterium nucleatum. Originally, it was isolated from the plaque samples of individuals diagnosed with periodontitis and has been phylogenetically identified as its own distinct sub-group, separate from its previously studied sister strains. Research studies have also linked this subspecies to human diseases, such as fatal sepsis and inflammatory periodontal disease.
Cronobacter sakazakii, which before 2007 was named Enterobacter sakazakii, is an opportunistic Gram-negative, rod-shaped, pathogenic bacterium that can live in very dry places, otherwise known as xerotolerance. C. sakazakii utilizes a number of genes to survive desiccation and this xerotolerance may be strain specific. The majority of C. sakazakii cases are adults but low-birth-weight preterm neonatal and older infants are at the highest risk. The pathogen is a rare cause of invasive infection in infants, with historically high case fatality rates (40–80%).
Pluralibacter gergoviae is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium. P. gergoviae is of special interest to the cosmetics industry, as it displays resistance to parabens, a common antimicrobial agent added to cosmetic products.
16S ribosomal RNA is the RNA component of the 30S subunit of a prokaryotic ribosome. It binds to the Shine-Dalgarno sequence and provides most of the SSU structure.
Cronobacter is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. Several Cronobacter species are desiccation resistant and persistent in dry products such as powdered infant formula. They are generally motile, reduce nitrate, use citrate, hydrolyze esculin and arginine, and are positive for L-ornithine decarboxylation. Acid is produced from D-glucose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose, D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-trehalose, galacturonate and D-maltose. Cronobacter spp. are also generally positive for acetoin production and negative for the methyl red test, indicating 2,3-butanediol rather than mixed acid fermentation. The type species of the genus Cronobacter is Cronobacter sakazakii comb. nov.
Enterococcus malodoratus is a species of the genus Enterococcus and a gram positive bacteria capable of opportunistic pathogenic response. These microbes have a thick polypeptide layer. Enterococcus can be found in the gastrointestinal tracts of humans and other mammals. In a study on the enterococcal flora of swine, E. malodoratus was found in the intestines and feces. It was not identified within the tonsils of swine, nor within cats, calves, dogs, horse, or poultry. The name "malodoratus" translates to "ill smelling".
Cronobacter turicensis is a bacterium. It is usually food-borne and pathogenic. It is named after Turicum, the Latin name of Zurich, as the type strain originates from there. Its type strain is strain 3032. This strain was first isolated from a fatal case of neonatal meningitis. C. Turicensis strains are indole negative but malonate, dulcitol and methyl-α-D-glucopyranoside positive.
Cronobacter muytjensii is a bacterium. It is named after Harry Muytjens. Its type strain is ATCC 51329T. It is indole, dulcitol, and malonate positive but palatinose and methyl-α-D-glucopyranoside negative.
Mannheimia varigena is a bacterial species, predominantly encountered in ruminants and historically classified within the former bacterial Pasteurella haemolytica complex, a group of bacteria involved in bovine respiratory disease (BRD). It is pathogenic.
Escherichia virus CC31, formerly known as Enterobacter virus CC31, is a dsDNA bacteriophage of the subfamily Tevenvirinae responsible for infecting the bacteria family of Enterobacteriaceae. It is one of two discovered viruses of the genus Karamvirus, diverging away from the previously discovered T4virus, as a clonal complex (CC). CC31 was first isolated from Escherichia coli B strain S/6/4 and is primarily associated with Escherichia, even though is named after Enterobacter.
Phytobacter is a genus of Gram-negative bacteria emerging from the grouping of isolates previously assigned to various genera of the family Enterobacteriaceae. This genus was first established on the basis of nitrogen fixing isolates from wild rice in China, but also includes a number of isolates obtained during a 2013 multi-state sepsis outbreak in Brazil and, retrospectively, several clinical strains isolated in the 1970s in the United States that are still available in culture collections, which originally were grouped into Brenner's Biotype XII of the Erwinia herbicola-Enterobacter agglomerans-Complex (EEC). Standard biochemical evaluation panels are lacking Phytobacter spp. from their database, thus often leading to misidentifications with other Enterobacterales species, especially Pantoea agglomerans. Clinical isolates of the species have been identified as an important source of extended-spectrum β-lactamase and carbapenem-resistance genes, which are usually mediated by genetic mobile elements. Strong protection of co-infecting sensitive bacteria has also been reported. Bacteria belonging to this genus are not pigmented, chemoorganotrophic and able to fix nitrogen. They are lactose fermenting, cytochrome-oxidase negative and catalase positive. Glucose is fermented with the production of gas. Colonies growing on MacConkey agar (MAC) are circular, convex and smooth with non-entire margins and a usually elevated center. Three species are currently validly included in the genus Phytobacter, which is still included within the Kosakonia clade in the lately reviewed family of Enterobacteriaceae. The incorporation of a fourth species, Phytobacter massiliensis, has recently been proposed via the unification of the genera Metakosakonia and Phytobacter.
Salisediminibacterium halotolerans is a gram-positive, alkalitolerant, and halophilic bacterium from the family Bacillaceae and genus of Salisediminibacterium, which was one of three bacterial strains, and the only novel species, isolated from sediments from the Xiarinaoer soda lake in Mongolia in 2012.
Pluralibacter is a genus of Gram negative bacteria from the family of Enterobacteriaceae. The genus consists of two species, P. gergoviae and P. pyrinus. Both species were originally classified in the genus Enterobacter but were reclassified into the novel genus Pluralibacter in 2013.
Pluralibacter pyrinus is a Gram-negative, motile, facultatively-anaerobic, rod-shaped bacterium. P. pyrinus is the causitive agent of brown leaf spot disease of pear trees.