Eocene Thermal Maximum 2 (ETM-2), also called H-1 or Elmo (Eocene Layer of Mysterious Origin), was a transient period of global warming that occurred around 54 Ma. [1] [2] [3] [4] [5] It was the second major hyperthermal that punctuated long-term warming from the Late Paleocene through the Early Eocene (58 to 50 Ma). [6]
The hyperthermals were geologically brief time intervals (<200,000 years) of global warming and massive input of isotopically light carbon into the ocean and atmosphere. [7] [8] The most extreme and best-studied event, the Paleocene-Eocene Thermal Maximum (PETM or ETM-1), occurred about 1.8 million years before ETM-2, at approximately 55.8 Ma. Other hyperthermals likely followed ETM-2 at nominally 53.6 Ma (H-2), 53.3 (I-1), 53.2 (I-2) and 52.8 Ma (informally called K, X or ETM-3). The number, nomenclature, absolute ages and relative global impact of the Eocene hyperthermals are the source of much current research. [9] [10] In any case, the hyperthermals appear to have ushered in the Early Eocene Climatic Optimum (EECO), the warmest sustained interval of the Cenozoic Era. [11] They also definitely precede the Azolla event at about 49 Ma.
ETM-2 is clearly recognized in sediment sequences by analyzing the stable carbon isotope composition of carbon-bearing material. [3] [9] [10] The 13C/12C ratio of calcium carbonate or organic matter drops significantly across the event. [12] This is similar to what happens when one examines sediment across the PETM, although the magnitude of the negative carbon isotope excursion is not as large. The timing of Earth system perturbations during ETM-2 and PETM also appear different. [5] Specifically, the onset of ETM-2 may have been longer (perhaps 30,000 years) while the recovery seems to have been shorter (perhaps <50,000 years). [5] (Note, however, that the timing of short-term carbon cycle perturbations during both events remains difficult to constrain.)
A thin clay-rich horizon marks ETM-2 in marine sediment from widely separated locations. In sections recovered from the deep sea (for example those recovered by Ocean Drilling Program Leg 208 on Walvis Ridge), this layer is caused by dissolution of calcium carbonate. [5] However, in sections deposited along continental margins (for example those now exposed along the Waiau Toa / Clarence River, New Zealand), the clay-rich horizon represents dilution by excess accumulation of terrestrial material entering the ocean. [4] Similar changes in sediment accumulation are found across the PETM. [4] In sediment from Lomonosov Ridge in the Arctic Ocean, intervals across both ETM-2 and PETM show signs of higher temperature, lower salinity and lower dissolved oxygen. [8]
The PETM and ETM-2 are thought to have a similar generic origin, [4] [8] [5] although this idea remains at the edge of current research. During both events, a tremendous amount of 13C-depleted carbon rapidly entered the ocean and atmosphere. This decreased the 13C/12C ratio of carbon-bearing sedimentary components, and dissolved carbonate in the deep ocean. The source of this 13C-depleted carbon during ETM2 is believed to be organic carbon. [13] Somehow carbon input was coupled to an increase in Earth surface temperature and a greater seasonality in precipitation, which explains excess terrestrial sediment discharge marking both events in continental margin sections. Explanations for changes during ETM-2 are the same as those for the PETM, and are discussed in that article.
The H-2 event appears to be a "minor" hyperthermal that follows ETM-2 (H-1) by about 100,000 years. This has led to speculation that the two events are somehow coupled and paced by changes in orbital eccentricity. [4] [5]
Sea surface temperatures (SSTs) climbed by 2–4 °C and salinity by ~1–2 ppt[ clarification needed ] in subtropical waters during ETM-2. [14]
Ocean acidification did occur during ETM2 as it did in the PETM, but the magnitude of the drop in pH was significantly lower. [15] Along the Atlantic Coastal Plain, changes in local hydrology and nutrient supply were minimal, unlike during the PETM. [16] In the Tethys Ocean, an increase in surface water eutrophication is recorded. [17]
The marine ecological recovery from the PETM was significantly inhibited by ETM2. [18] As in the case of the PETM, reversible dwarfing of mammals has been noted to have occurred during the ETM-2. [19] [20] Unlike during the PETM, there was no change in the photosymbiont associations of the planktonic foraminifer Acarinina soldadoensis, possibly because the PETM had already selected for adaptations enabling them to withstand extreme hyperthermals or because of the lesser magnitude of ETM2. [21] In the Tethys, planktonic foraminifer test size decreased by 40%, while calcareous nannoplankton community sizes dropped as reflected by increased abundance of small placoliths. [22]
The Eocene is a geological epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name Eocene comes from the Ancient Greek Ἠώς and καινός and refers to the "dawn" of modern ('new') fauna that appeared during the epoch.
The Paleogene Period is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 Ma to the beginning of the Neogene Period 23.03 Ma. It is the first period of the Cenozoic Era, the tenth period of the Phanerozoic and is divided into the Paleocene, Eocene, and Oligocene epochs. The earlier term Tertiary Period was used to define the time now covered by the Paleogene Period and subsequent Neogene Period; despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use. Paleogene is often abbreviated "Pg", although the United States Geological Survey uses the abbreviation "Pe" for the Paleogene on the Survey's geologic maps.
Paleoclimatology is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.
The Paleocene–Eocene thermal maximum (PETM), alternatively ”Eocene thermal maximum 1 (ETM1)“ and formerly known as the "Initial Eocene" or “Late Paleocene thermal maximum", was a geologically brief time interval characterized by a 5–8 °C global average temperature rise and massive input of carbon into the ocean and atmosphere. The event began, now formally codified, at the precise time boundary between the Paleocene and Eocene geological epochs. The exact age and duration of the PETM remain uncertain, but it occurred around 55.8 million years ago (Ma) and lasted about 200 thousand years (Ka).
The Clarence River is a major river which flows through the Kaikōura Ranges in the northeast of New Zealand's South Island. At roughly 209 kilometres (130 mi) long, it is the longest river in Canterbury and the eighth longest in New Zealand.
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.
An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard–Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime. Such a sudden climate change can be the result of feedback loops within the climate system or tipping points in the climate system.
TEX86 is an organic paleothermometer based upon the membrane lipids of mesophilic marine Nitrososphaerota (formerly "Thaumarchaeota", "Marine Group 1 Crenarchaeota").
The Danian is the oldest age or lowest stage of the Paleocene Epoch or Series, of the Paleogene Period or System, and of the Cenozoic Era or Erathem. The beginning of the Danian is at the Cretaceous–Paleogene extinction event 66 Ma. The age ended 61.6 Ma, being followed by the Selandian.
In the geologic timescale the Ypresian is the oldest age or lowest stratigraphic stage of the Eocene. It spans the time between 56 and47.8 Ma, is preceded by the Thanetian Age and is followed by the Eocene Lutetian Age. The Ypresian is consistent with the Lower Eocene.
The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The hypothesis is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years. It is further proposed that these warming events caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials.
The Eocene–Oligocene extinction event, also called the Eocene-Oligocene transition (EOT) or Grande Coupure, is the transition between the end of the Eocene and the beginning of the Oligocene, an extinction event and faunal turnover occurring between 33.9 and 33.4 million years ago. It was marked by large-scale extinction and floral and faunal turnover, although it was relatively minor in comparison to the largest mass extinctions.
The Azolla event is a paleoclimatology scenario hypothesized to have occurred in the middle Eocene epoch, around 49 million years ago, when blooms of the carbon-fixing freshwater fern Azolla are thought to have happened in the Arctic Ocean. As the fern died and sank to the stagnant sea floor, they were incorporated into the sediment over a period of about 800,000 years; the resulting draw-down of carbon dioxide has been speculated to have helped reverse the planet from the "greenhouse Earth" state of the Paleocene-Eocene Thermal Maximum, when the planet was hot enough for turtles and palm trees to prosper at the poles, to the current icehouse Earth known as the Late Cenozoic Ice Age.
The Paleocene, or Palaeocene, is a geological epoch that lasted from about 66 to 56 million years ago (mya). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek παλαιός palaiós meaning "old" and the Eocene Epoch, translating to "the old part of the Eocene".
Gerald R. Dickens is Professor of Earth Science at Trinity College Dublin, and researches the history of the world’s oceans, with respect to the changing patterns of their geology, chemistry and biology.
The Cretaceous Thermal Maximum (CTM), also known as Cretaceous Thermal Optimum, was a period of climatic warming that reached its peak approximately 90 million years ago (90 Ma) during the Turonian age of the Late Cretaceous epoch. The CTM is notable for its dramatic increase in global temperatures characterized by high carbon dioxide levels.
The Middle Eocene Climatic Optimum (MECO), also called the Middle Eocene Thermal Maximum (METM), was a period of very warm climate that occurred during the Bartonian, from around 40.5 to 40.0 Ma. It marked a notable reversal of the overall trend of global cooling that characterised the Middle and Late Eocene.
Ellen Thomas is a Dutch-born environmental scientist and geologist specializing in marine micropaleontology and paleoceanography. She is the emerita Harold T Stearns Professor and the Smith Curator of Paleontology of the Joe Webb Peoples Museum of Natural History at Wesleyan University, and a senior research scientist at Yale University.
A hyperthermal event corresponds to a sudden warming of the planet on a geologic time scale.
The Early Eocene Climatic Optimum (EECO), also referred to as the Early Eocene Thermal Maximum (EETM), was a period of extremely warm greenhouse climatic conditions during the Eocene epoch. The EECO represented the hottest sustained interval of the Cenozoic era and one of the hottest periods in all of Earth's history.