Ethyl trifluoroacetate

Last updated
Ethyl trifluoroacetate
Ethyl trifluoroacetate.svg
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.006.229 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 206-851-6
PubChem CID
UNII
  • InChI=1S/C4H5F3O2/c1-2-9-3(8)4(5,6)7/h2H2,1H3
    Key: STSCVKRWJPWALQ-UHFFFAOYSA-N
  • CCOC(=O)C(F)(F)F
Properties
C4H5F3O2
Molar mass 142.077 g·mol−1
Density 1.1952 g/cm3 (16.7 °C)
Boiling point 61 °C (142 °F; 334 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ethyl trifluoroacetate is a chemical compound from the trifluoroacetate group.

Contents

Production

Ethyl trifluoroacetate can be obtained by reacting 2,4,6-tris-(trifluoromethyl)-1,3,5-triazine with ethanol in the presence of hydrochloric acid. The former, in turn, can be prepared by a two-step reaction starting from trichloroacetonitrile by reaction with hydrogen chloride and fluorination of the intermediate with antimony trifluoride. [1]

The compound can also be obtained by reacting trifluoroacetic acid or sodium trifluoroacetate [2] with ethanol. [3]

Properties

Ethyl trifluoroacetate is a colorless and odorless liquid that is sparingly soluble in water but miscible with chloroform and methanol. The compound exists in the gas phase in two more conformal[ clarification needed ] forms. [4]

Use

Ethyl trifluoroacetate is used as an intermediate in organic synthesis to prepare organic fluorine compounds such as 3-ethyl-1-methylimidazolium trifluoroacetate (EMITA). It is also used in the synthesis of various pharmaceutically active molecules and agricultural products, and is also useful for the preparation of trifluoroacetylated compounds. The trifluoroacetyl group is widely used as an amine protecting group in organic synthesis because it can be easily removed under mild conditions. [5]

Related Research Articles

<span class="mw-page-title-main">Diethyl malonate</span> Chemical compound

Diethyl malonate, also known as DEM, is the diethyl ester of malonic acid. It occurs naturally in grapes and strawberries as a colourless liquid with an apple-like odour, and is used in perfumes. It is also used to synthesize other compounds such as barbiturates, artificial flavourings, vitamin B1, and vitamin B6.

In organic chemistry, the diazo group is an organic moiety consisting of two linked nitrogen atoms at the terminal position. Overall charge-neutral organic compounds containing the diazo group bound to a carbon atom are called diazo compounds or diazoalkanes and are described by the general structural formula R2C=N+=N. The simplest example of a diazo compound is diazomethane, CH2N2. Diazo compounds should not be confused with azo compounds or with diazonium compounds.

<span class="mw-page-title-main">Xanthate</span> Salt that is a metal-thioate/O-esters of dithiocarbonate

A xanthate is a salt or ester of a xanthic acid. The formula of the salt of xanthic acid is [R−O−CS2]M+. Xanthate also refers to the anion [R−O−CS2]. The formula of a xanthic acid is R−O−C(=S)−S−H, such as ethyl xanthic acid, while the formula of an ester of a xanthic acid is R−O−C(=S)−S−R', where R and R' are organyl groups. The salts of xanthates are also called O-organyl dithioates. The esters of xanthic acid are also called O,S-diorganyl esters of dithiocarbonic acid. The name xanthate is derived from Ancient Greek ξανθός (xanthos) meaning 'yellowish' or 'golden', and indeed most xanthate salts are yellow. They were discovered and named in 1823 by Danish chemist William Christopher Zeise. These organosulfur compounds are important in two areas: the production of cellophane and related polymers from cellulose and for extraction of certain sulphide bearing ores. They are also versatile intermediates in organic synthesis.

Dichlorocarbene is the reactive intermediate with chemical formula CCl2. Although this chemical species has not been isolated, it is a common intermediate in organic chemistry, being generated from chloroform. This bent diamagnetic molecule rapidly inserts into other bonds.

<span class="mw-page-title-main">Curtius rearrangement</span> Chemical reaction

The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.

<span class="mw-page-title-main">Ethyl sulfate</span> Chemical compound

Ethyl sulfate, also known as sulfovinic acid, is an organic chemical compound used as an intermediate in the production of ethanol from ethylene. It is the ethyl ester of sulfuric acid.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

<span class="mw-page-title-main">Sodium ethoxide</span> Ionic compound made of a C2H5–O anion and a sodium cation

Sodium ethoxide, also referred to as sodium ethanolate, is the ionic, organic compound with the formula CH3CH2ONa, C2H5ONa, or NaOEt. It is a white solid, although impure samples appear yellow or brown. It dissolves in polar solvents such as ethanol. It is commonly used as a strong base.

<span class="mw-page-title-main">Fluorene</span> Chemical compound

Fluorene, or 9H-fluorene is an organic compound with the formula (C6H4)2CH2. It forms white crystals that exhibit a characteristic, aromatic odor similar to that of naphthalene. Despite its name, it does not contain the element fluorine, but rather it comes from the violet fluorescence it exhibits. For commercial purposes it is obtained from coal tar. It is insoluble in water and soluble in many organic solvents. Although sometimes classified as a polycyclic aromatic hydrocarbon, the five-membered ring has no aromatic properties. Fluorene is mildly acidic.

The Wurtz–Fittig reaction is the chemical reaction of an aryl halide, alkyl halides, and sodium metal to give substituted aromatic compounds. Following the work of Charles Adolphe Wurtz on the sodium-induced coupling of alkyl halides, Wilhelm Rudolph Fittig extended the approach to the coupling of an alkyl halide with an aryl halide. This modification of the Wurtz reaction is considered a separate process and is named for both scientists.

The total synthesis of quinine, a naturally-occurring antimalarial drug, was developed over a 150-year period. The development of synthetic quinine is considered a milestone in organic chemistry although it has never been produced industrially as a substitute for natural occurring quinine. The subject has also been attended with some controversy: Gilbert Stork published the first stereoselective total synthesis of quinine in 2001, meanwhile shedding doubt on the earlier claim by Robert Burns Woodward and William Doering in 1944, claiming that the final steps required to convert their last synthetic intermediate, quinotoxine, into quinine would not have worked had Woodward and Doering attempted to perform the experiment. A 2001 editorial published in Chemical & Engineering News sided with Stork, but the controversy was eventually laid to rest once and for all when Williams and coworkers successfully repeated Woodward's proposed conversion of quinotoxine to quinine in 2007.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

<span class="mw-page-title-main">Achmatowicz reaction</span> Organic synthesis

The Achmatowicz reaction, also known as the Achmatowicz rearrangement, is an organic synthesis in which a furan is converted to a dihydropyran. In the original publication by the Polish Chemist Osman Achmatowicz Jr. in 1971 furfuryl alcohol is reacted with bromine in methanol to 2,5-dimethoxy-2,5-dihydrofuran which rearranges to the dihydropyran with dilute sulfuric acid. Additional reaction steps, alcohol protection with methyl orthoformate and boron trifluoride) and then ketone reduction with sodium borohydride produce an intermediate from which many monosaccharides can be synthesised.

In chemistry, hyponitrite may refer to the anion N
2
O2−
2
([ON=NO]2−), or to any ionic compound that contains it. In organic chemistry, it may also refer to the group −O−N=N−O−, or any organic compound with the generic formula R1−O−N=N−O−R2, where R1 and R2 are organic groups. Such compounds can be viewed as salts and esters of hyponitrous acid. An acid hyponitrite is an ionic compound with the anion HN
2
O
2
([HON=NO]).

Trifluoromethylation in organic chemistry describes any organic reaction that introduces a trifluoromethyl group in an organic compound. Trifluoromethylated compounds are of some importance in pharmaceutical industry and agrochemicals. Several notable pharmaceutical compounds have a trifluoromethyl group incorporated: fluoxetine, mefloquine, Leflunomide, nulitamide, dutasteride, bicalutamide, aprepitant, celecoxib, fipronil, fluazinam, penthiopyrad, picoxystrobin, fluridone, norflurazon, sorafenib and triflurazin. A relevant agrochemical is trifluralin. The development of synthetic methods for adding trifluoromethyl groups to chemical compounds is actively pursued in academic research.

<span class="mw-page-title-main">Trichloroacetonitrile</span> Chemical compound

Trichloroacetonitrile is an organic compound with the formula CCl3CN. It is a colourless liquid, although commercial samples often are brownish. It is used commercially as a precursor to the fungicide etridiazole. It is prepared by dehydration of trichloroacetamide. As a bifunctional compound, trichloroacetonitrile can react at both the trichloromethyl and the nitrile group. The electron-withdrawing effect of the trichloromethyl group activates the nitrile group for nucleophilic additions. The high reactivity makes trichloroacetonitrile a versatile reagent, but also causes its susceptibility towards hydrolysis.

<span class="mw-page-title-main">Etabonate</span> Class of chemical compounds

Etabonate or ethyl carbonate is the chemical group with formula –CO
3
–C
2
H
5
, or H
3
C–CH
2
–O–C(=O)–O
–. The names are also used for esters R–OCO
2
C
2
H
5
, for the anion [C
2
H
5
OCO
2
], and for salts of the latter.

<span class="mw-page-title-main">Ethyl cyanoacetate</span> Chemical compound

Ethyl cyanoacetate is an organic compound that contains a carboxylate ester and a nitrile. It is a colourless liquid with a pleasant odor. This material is useful as a starting material for synthesis due to its variety of functional groups and chemical reactivity.

<span class="mw-page-title-main">Diethyl oxomalonate</span> Chemical compound

Diethyl oxomalonate is the diethyl ester of mesoxalic acid (ketomalonic acid), the simplest oxodicarboxylic acid and thus the first member (n = 0) of a homologous series HOOC–CO–(CH2)n–COOH with the higher homologues oxalacetic acid (n = 1), α-ketoglutaric acid (n = 2) and α-ketoadipic acid (n = 3) (the latter a metabolite of the amino acid lysine). Diethyl oxomalonate reacts because of its highly polarized keto group as electrophile in addition reactions and is a highly active reactant in pericyclic reactions such as the Diels-Alder reactions, cycloadditions or ene reactions. At humid air, mesoxalic acid diethyl ester reacts with water to give diethyl mesoxalate hydrate and the green-yellow oil are spontaneously converted to white crystals.

<span class="mw-page-title-main">Sodium trifluoroacetate</span> Chemical compound

Sodium trifluoroacetate is a chemical compound with a formula of CF3CO2Na. It is the sodium salt of trifluoroacetic acid. It is used as a source of trifluoromethylations.

References

  1. T. R. Norton (1950). "A New Synthesis of Ethyl Trifluoroacetate". Journal of the American Chemical Society. 72 (8): 3527–3528. doi:10.1021/ja01164a056. ISSN   0002-7863.
  2. Murray, R. L.; Babcock, J. H. (1946). The Preparation of Sodium Trifluoroacetate and Ethyl Trifluoroacetate. Atomic Energy Commission.
  3. Google Patents: US4879407A - Process for the preparation of ethyl trifluoroacetate - Google Patents, retrieved 7 August 2022
  4. "Experimental and theoretical structure and vibrational analysis of ethyl trifluoroacetate, CF3CO2CH2CH3: Structure and vibrational analysis of CF3CO2CH2CH3". Journal of Raman Spectroscopy. 41 (10): 1357–1368. 2010. doi:10.1002/jrs.2550.
  5. Xu, Daqiang; Prasad, Kapa; Repic, Oljan; Blacklock, Thomas J. (1995). "Ethyl trifluoroacetate: a powerful reagent for differentiating amino groups". Tetrahedron Letters (in German). 36 (41): 7357–7360. doi:10.1016/0040-4039(95)01655-4. ISSN   0040-4039.