Evolutionary invasion analysis

Last updated

Evolutionary invasion analysis, also known as adaptive dynamics, is a set of mathematical modeling techniques that use differential equations to study the long-term evolution of traits in asexually reproducing populations. It rests on the following four assumptions about mutation and natural selection in the population under study: [1]

Contents

  1. Individuals reproduce clonally.
  2. Mutations are infrequent, and natural selection acts quickly. The population can be assumed to be at equilibrium when a new mutant arises.
  3. The number of individuals with the mutant trait is initially negligible in the large, established resident population.
  4. Phenotypic mutations occur in small but not infinitesimal steps.

Evolutionary invasion analysis makes it possible to identify conditions on model parameters for which the mutant population dies out, replaces the resident population, and/or coexists with the resident population. Long-term coexistence (on the evolutionary timescale) is known as evolutionary branching. When branching occurs, the mutant establishes itself as a second resident in the environment.

Central to evolutionary invasion analysis is the mutant's invasion fitness. This is a mathematical expression for the mutant's long-term exponential growth rate when it is introduced into the resident population in small numbers. If the invasion fitness is positive, the mutant population can grow in the environment set by the resident organism. If the invasion fitness is negative, the mutant population swiftly goes extinct. [1]

Introduction and background

The basic principle of evolution via natural selection was outlined by Charles Darwin in his 1859 book, On the Origin of Species . Though controversial at the time, the central ideas remain largely unchanged to this date, even though much more is now known about the biological basis of inheritance. Darwin expressed his arguments verbally, but many attempts have since then been made to formalise the theory of evolution. The best known are population genetics which models inheritance at the expense of ecological detail, quantitative genetics which incorporates quantitative traits influenced by genes at many loci, and evolutionary game theory which ignores genetic detail but incorporates a high degree of ecological realism, in particular that the success of any given strategy depends on the frequency at which strategies are played in the population, a concept known as frequency dependence.

Adaptive dynamics is a set of techniques developed during the 1990s for understanding the long-term consequences of small mutations in the traits expressing the phenotype. They link population dynamics to evolutionary dynamics and incorporate and generalise the fundamental idea of frequency-dependent selection from game theory.

Fundamental ideas

Two fundamental ideas of adaptive dynamics are that the resident population is in a dynamical equilibrium when new mutants appear, and that the eventual fate of such mutants can be inferred from their initial growth rate when rare in the environment consisting of the resident. This rate is known as the invasion exponent when measured as the initial exponential growth rate of mutants, and as the basic reproductive number when it measures the expected total number of offspring that a mutant individual produces in a lifetime. It is sometimes called the invasion fitness of mutants.

To make use of these ideas, a mathematical model must explicitly incorporate the traits undergoing evolutionary change. The model should describe both the environment and the population dynamics given the environment, even if the variable part of the environment consists only of the demography of the current population. The invasion exponent can then be determined. This can be difficult, but once determined, the adaptive dynamics techniques can be applied independent of the model structure.

Monomorphic evolution

A population consisting of individuals with the same trait is called monomorphic. If not explicitly stated otherwise, the trait is assumed to be a real number, and r and m are the trait value of the monomorphic resident population and that of an invading mutant, respectively.

Invasion exponent and selection gradient

The invasion exponent is defined as the expected growth rate of an initially rare mutant in the environment set by the resident (r), which means the frequency of each phenotype (trait value) whenever this suffices to infer all other aspects of the equilibrium environment, such as the demographic composition and the availability of resources. For each r, the invasion exponent can be thought of as the fitness landscape experienced by an initially rare mutant. The landscape changes with each successful invasion, as is the case in evolutionary game theory, but in contrast with the classical view of evolution as an optimisation process towards ever higher fitness.

We will always assume that the resident is at its demographic attractor, and as a consequence for all r, as otherwise the population would grow indefinitely.

The selection gradient is defined as the slope of the invasion exponent at , . If the sign of the selection gradient is positive (negative) mutants with slightly higher (lower) trait values may successfully invade. This follows from the linear approximation

which holds whenever .

Pairwise-invasibility plots

The invasion exponent represents the fitness landscape as experienced by a rare mutant. In a large (infinite) population only mutants with trait values for which is positive are able to successfully invade. The generic outcome of an invasion is that the mutant replaces the resident, and the fitness landscape as experienced by a rare mutant changes. To determine the outcome of the resulting series of invasions pairwise-invasibility plots (PIPs) are often used. These show for each resident trait value all mutant trait values for which is positive. Note that is zero at the diagonal . In PIPs the fitness landscapes as experienced by a rare mutant correspond to the vertical lines where the resident trait value is constant.

Evolutionarily singular strategies

The selection gradient determines the direction of evolutionary change. If it is positive (negative) a mutant with a slightly higher (lower) trait-value will generically invade and replace the resident. But what will happen if vanishes? Seemingly evolution should come to a halt at such a point. While this is a possible outcome, the general situation is more complex. Traits or strategies for which , are known as evolutionarily singular strategies. Near such points the fitness landscape as experienced by a rare mutant is locally `flat'. There are three qualitatively different ways in which this can occur. First, a degenerate case similar to the saddle point of a qubic function where finite evolutionary steps would lead past the local 'flatness'. Second, a fitness maximum which is known as an evolutionarily stable strategy (ESS) and which, once established, cannot be invaded by nearby mutants. Third, a fitness minimum where disruptive selection will occur and the population branch into two morphs. This process is known as evolutionary branching. In a pairwise invasibility plot the singular strategies are found where the boundary of the region of positive invasion fitness intersects the diagonal.

Singular strategies can be located and classified once the selection gradient is known. To locate singular strategies, it is sufficient to find the points for which the selection gradient vanishes, i.e. to find such that . These can be classified then using the second derivative test from basic calculus. If the second derivative evaluated at is negative (positive) the strategy represents a local fitness maximum (minimum). Hence, for an evolutionarily stable strategy we have

If this does not hold the strategy is evolutionarily unstable and, provided that it is also convergence stable, evolutionary branching will eventually occur. For a singular strategy to be convergence stable monomorphic populations with slightly lower or slightly higher trait values must be invadable by mutants with trait values closer to . That this can happen the selection gradient in a neighbourhood of must be positive for and negative for . This means that the slope of as a function of at is negative, or equivalently

The criterion for convergence stability given above can also be expressed using second derivatives of the invasion exponent, and the classification can be refined to span more than the simple cases considered here.

Polymorphic evolution

The normal outcome of a successful invasion is that the mutant replaces the resident. However, other outcomes are also possible; in particular both the resident and the mutant may persist, and the population then becomes dimorphic. Assuming that a trait persists in the population if and only if its expected growth-rate when rare is positive, the condition for coexistence among two traits and is

and

where and are often referred to as morphs. Such a pair is a protected dimorphism. The set of all protected dimorphisms is known as the region of coexistence. Graphically, the region consists of the overlapping parts when a pair-wise invasibility plot is mirrored over the diagonal

Invasion exponent and selection gradients in polymorphic populations

The invasion exponent is generalised to dimorphic populations straightforwardly, as the expected growth rate of a rare mutant in the environment set by the two morphs and . The slope of the local fitness landscape for a mutant close to or is now given by the selection gradients

and

In practise, it is often difficult to determine the dimorphic selection gradient and invasion exponent analytically, and one often has to resort to numerical computations.

Evolutionary branching

The emergence of protected dimorphism near singular points during the course of evolution is not unusual, but its significance depends on whether selection is stabilising or disruptive. In the latter case, the traits of the two morphs will diverge in a process often referred to as evolutionary branching. Geritz 1998 presents a compelling argument that disruptive selection only occurs near fitness minima. To understand this heuristically, consider a dimorphic population and near a singular point. By continuity

and, since

the fitness landscape for the dimorphic population must be a perturbation of that for a monomorphic resident near the singular strategy.

Trait evolution plots

Evolution after branching is illustrated using trait evolution plots. These show the region of coexistence, the direction of evolutionary change and whether points where the selection gradient vanishes are fitness maxima or minima. Evolution may well lead the dimorphic population outside the region of coexistence, in which case one morph is extinct and the population once again becomes monomorphic.

Other uses

Adaptive dynamics effectively combines game theory and population dynamics. As such, it can be very useful in investigating how evolution affects the dynamics of populations. One interesting finding to come out of this is that individual-level adaptation can sometimes result in the extinction of the whole population/species, a phenomenon known as evolutionary suicide.

Related Research Articles

An evolutionarily stable strategy (ESS) is a strategy that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.

<span class="mw-page-title-main">Evolutionary psychology</span> Branch of psychology

Evolutionary psychology is a theoretical approach in psychology that examines cognition and behavior from a modern evolutionary perspective. It seeks to identify which human psychological traits are evolved adaptations – that is, the functional products of natural selection or sexual selection in human evolution. Adaptationist thinking about physiological mechanisms, such as the heart, lungs, and immune system, is common in evolutionary biology. Some evolutionary psychologists apply the same thinking to psychology, arguing that the modularity of mind is similar to that of the body and with different modular adaptations serving different functions. These evolutionary psychologists argue that much of human behavior is the output of psychological adaptations that evolved to solve recurrent problems in human ancestral environments.

<span class="mw-page-title-main">Natural selection</span> Mechanism of evolution by differential survival and reproduction of individuals

Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which in his view is intentional, whereas natural selection is not.

<span class="mw-page-title-main">Neutral theory of molecular evolution</span>

The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The theory applies only for evolution at the molecular level, and is compatible with phenotypic evolution being shaped by natural selection as postulated by Charles Darwin. The neutral theory allows for the possibility that most mutations are deleterious, but holds that because these are rapidly removed by natural selection, they do not make significant contributions to variation within and between species at the molecular level. A neutral mutation is one that does not affect an organism's ability to survive and reproduce. The neutral theory assumes that most mutations that are not deleterious are neutral rather than beneficial. Because only a fraction of gametes are sampled in each generation of a species, the neutral theory suggests that a mutant allele can arise within a population and reach fixation by chance, rather than by selective advantage.

<span class="mw-page-title-main">Fitness (biology)</span> Expected reproductive success

Fitness is the quantitative representation of individual reproductive success. It is also equal to the average contribution to the gene pool of the next generation, made by the same individuals of the specified genotype or phenotype. Fitness can be defined either with respect to a genotype or to a phenotype in a given environment or time. The fitness of a genotype is manifested through its phenotype, which is also affected by the developmental environment. The fitness of a given phenotype can also be different in different selective environments.

<span class="mw-page-title-main">Fitness landscape</span> Model used to visualise relationship between genotypes and reproductive success

In evolutionary biology, fitness landscapes or adaptive landscapes are used to visualize the relationship between genotypes and reproductive success. It is assumed that every genotype has a well-defined replication rate. This fitness is the "height" of the landscape. Genotypes which are similar are said to be "close" to each other, while those that are very different are "far" from each other. The set of all possible genotypes, their degree of similarity, and their related fitness values is then called a fitness landscape. The idea of a fitness landscape is a metaphor to help explain flawed forms in evolution by natural selection, including exploits and glitches in animals like their reactions to supernormal stimuli.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

<span class="mw-page-title-main">Index of evolutionary biology articles</span>

This is a list of topics in evolutionary biology.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

In the theory of evolution and natural selection, the Price equation describes how a trait or allele changes in frequency over time. The equation uses a covariance between a trait and fitness, to give a mathematical description of evolution and natural selection. It provides a way to understand the effects that gene transmission and natural selection have on the frequency of alleles within each new generation of a population. The Price equation was derived by George R. Price, working in London to re-derive W.D. Hamilton's work on kin selection. Examples of the Price equation have been constructed for various evolutionary cases. The Price equation also has applications in economics.

<i>r</i>/<i>K</i> selection theory Ecological theory concerning the selection of life history traits

In ecology, r/K selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individual parental investment of r-strategists, or on a reduced quantity of offspring with a corresponding increased parental investment of K-strategists, varies widely, seemingly to promote success in particular environments. The concepts of quantity or quality offspring are sometimes referred to as "cheap" or "expensive", a comment on the expendable nature of the offspring and parental commitment made. The stability of the environment can predict if many expendable offspring are made or if fewer offspring of higher quality would lead to higher reproductive success. An unstable environment would encourage the parent to make many offspring, because the likelihood of all of them surviving to adulthood is slim. In contrast, more stable environments allow parents to confidently invest in one offspring because they are more likely to survive to adulthood.

In biology, altruism refers to behaviour by an individual that increases the fitness of another individual while decreasing the fitness of the agent. Altruism in this sense is different from the philosophical concept of altruism, in which an action would only be called "altruistic" if it was done with the conscious intention of helping another. In the behavioural sense, there is no such requirement. As such, it is not evaluated in moral terms—it is the consequences of an action for reproductive fitness that determine whether the action is considered altruistic, not the intentions, if any, with which the action is performed.

Evolutionary graph theory is an area of research lying at the intersection of graph theory, probability theory, and mathematical biology. Evolutionary graph theory is an approach to studying how topology affects evolution of a population. That the underlying topology can substantially affect the results of the evolutionary process is seen most clearly in a paper by Erez Lieberman, Christoph Hauert and Martin Nowak.

A population can be described as being in an evolutionarily stable state when that population's "genetic composition is restored by selection after a disturbance, provided the disturbance is not too large". This population as a whole can be either monomorphic or polymorphic. This is now referred to as convergent stability.

<span class="mw-page-title-main">Differential evolution</span>

In evolutionary computation, differential evolution (DE) is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Such methods are commonly known as metaheuristics as they make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an optimal solution is ever found.

Human behavioral ecology (HBE) or human evolutionary ecology applies the principles of evolutionary theory and optimization to the study of human behavioral and cultural diversity. HBE examines the adaptive design of traits, behaviors, and life histories of humans in an ecological context. One aim of modern human behavioral ecology is to determine how ecological and social factors influence and shape behavioral flexibility within and between human populations. Among other things, HBE attempts to explain variation in human behavior as adaptive solutions to the competing life-history demands of growth, development, reproduction, parental care, and mate acquisition.

An evolutionary landscape is a metaphor or a construct used to think about and visualize the processes of evolution acting on a biological entity. This entity can be viewed as searching or moving through a search space. For example, the search space of a gene would be all possible nucleotide sequences. The search space is only part of an evolutionary landscape. The final component is the "y-axis", which is usually fitness. Each value along the search space can result in a high or low fitness for the entity. If small movements through search space cause changes in fitness that are relatively small, then the landscape is considered smooth. Smooth landscapes happen when most fixed mutations have little to no effect on fitness, which is what one would expect with the neutral theory of molecular evolution. In contrast, if small movements result in large changes in fitness, then the landscape is said to be rugged. In either case, movement tends to be toward areas of higher fitness, though usually not the global optima.

A viral quasispecies is a population structure of viruses with a large number of variant genomes. Quasispecies result from high mutation rates as mutants arise continually and change in relative frequency as viral replication and selection proceeds.

Natural evolution strategies (NES) are a family of numerical optimization algorithms for black box problems. Similar in spirit to evolution strategies, they iteratively update the (continuous) parameters of a search distribution by following the natural gradient towards higher expected fitness.

A selection gradient describes the relationship between a character trait and a species' relative fitness. A trait may be a physical characteristic, such as height or eye color, or behavioral, such as flying or vocalizing. Changes in a trait, such as the amount of seeds a plant produces or the length of a bird's beak, may improve or reduce their relative fitness. Changes in traits may accumulate in a population under an ongoing process of natural selection. Understanding how changes in a trait affect fitness helps evolutionary biologists understand the nature of evolutionary pressures on a population.

References

  1. 1 2 Geritz, S.A.H.; Kisdi, É.; Meszéna, G.; Metz, J.A.J. (January 1998). "Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree". Evolutionary Ecology. 12 (1): 35–57. CiteSeerX   10.1.1.50.9786 . doi:10.1023/A:1006554906681. S2CID   9645795.