Exo-Norborneol

Last updated
exo-Norborneol
Exo-norborneol 3D-skeletal.png
Names
Preferred IUPAC name
rel-(1R,2R,4S)-Bicyclo[2.2.1]heptan-2-ol
Identifiers
  • 497-37-0 Yes check.svgY
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.133 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1/C7H12O/c8-7-4-5-1-2-6(7)3-5/h5-8H,1-4H2/t5-,6+,7+/s2
    Key: ZQTYQMYDIHMKQB-YUZWJPFSNA-N
  • (2R):InChI=1S/C7H12O/c8-7-4-5-1-2-6(7)3-5/h5-8H,1-4H2/t5-,6+,7+/m0/s1
    Key: ZQTYQMYDIHMKQB-VQVTYTSYSA-N
  • (2S):InChI=1S/C7H12O/c8-7-4-5-1-2-6(7)3-5/h5-8H,1-4H2/t5-,6+,7+/m1/s1
    Key: ZQTYQMYDIHMKQB-RRKCRQDMSA-N
  • (2R):O[C@@H]1C[C@@H]2C[C@H]1CC2
  • (2S):O[C@H]1C[C@H]2C[C@@H]1CC2
Properties
C7H12O
Molar mass 112.172 g·mol−1
Melting point 124 to 126 °C (255 to 259 °F; 397 to 399 K)
Boiling point 176 to 177 °C (349 to 351 °F; 449 to 450 K)
Hazards
Safety data sheet (SDS) Fisher MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

exo-Norborneol is an alcohol containing the norbornane skeleton. Commercially available, this colorless compound may be prepared by the reaction of norbornene with formic acid, followed by hydrolysis of the resultant exo-norbornyl formate. [1]

Contents

See also

Related Research Articles

In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally-allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels-Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

Dicyclopentadiene Chemical compound

Dicyclopentadiene, abbreviated DCPD, is a chemical compound with formula C10H12. At room temperature, it is a white brittle wax, although lower purity samples can be straw coloured liquids. The pure material smells somewhat of soy wax or camphor, with less pure samples possessing a stronger acrid odor. Its energy density is 10,975 Wh/l. Dicyclopentadiene is a co-produced in large quantities in the steam cracking of naphtha and gas oils to ethylene. The major use is in resins, particularly, unsaturated polyester resins. It is also used in inks, adhesives, and paints.

endoexo isomerism is a special type of stereoisomerism found in organic compounds with a substituent on a bridged ring system. The prefix endo is reserved for the isomer with the substituent located closest, or "syn", to the longest bridge. The prefix exo is reserved for the isomer with the substituent located farthest, or "anti", to the longest bridge. Here "longest" and "shortest" refer to the number of atoms that comprise the bridge. This type of molecular geometry is found in norbornane systems such as dicyclopentadiene.

Norbornene Chemical compound

Norbornene or norbornylene or norcamphene is a highly strained bridged cyclic hydrocarbon. It is a white solid with a pungent sour odor. The molecule consists of a cyclohexene ring with a methylene bridge between carbons 1 and 4. The molecule carries a double bond which induces significant ring strain and significant reactivity.

Borneol Chemical compound

Borneol is a bicyclic organic compound and a terpene derivative. The hydroxyl group in this compound is placed in an endo position. Being chiral, borneol exists as two enantiomers. Both (+)-borneol and (−)-borneol (l-borneol) are found in nature.

Azomethine ylide

Azomethine ylides are nitrogen-based 1,3-dipoles, consisting of an iminium ion next to a carbanion. They are used in 1,3-dipolar cycloaddition reactions to form five-membered heterocycles, including pyrrolidines and pyrrolines. These reactions are highly stereo- and regioselective, and have the potential to form four new contiguous stereocenters. Azomethine ylides thus have high utility in total synthesis, and formation of chiral ligands and pharmaceuticals. Azomethine ylides can be generated from many sources, including aziridines, imines, and iminiums. They are often generated in situ, and immediately reacted with dipolarophiles.

Norbornane Chemical compound

Norbornane (also known as bicyclo[2.2.1]heptane) is an organic compound and a saturated hydrocarbon with chemical formula C7H12. It is a crystalline compound with a melting point of 88 °C. The carbon skeleton is derived from cyclohexane ring with a methylene bridge in the 1,4- position, and is a bridged bicyclic compound. The compound is a prototype of a class of strained bicyclic hydrocarbons.

Baldwins rules

Baldwin's rules in organic chemistry are a series of guidelines outlining the relative favorabilities of ring closure reactions in alicyclic compounds. They were first proposed by Jack Baldwin in 1976.

Barrelene Chemical compound

Barrelene is a bicyclic organic compound with chemical formula C8H8 and systematic name bicyclo[2.2.2]octa-2,5,7-triene. First synthesized and described by Howard Zimmerman in 1960, the name derives from the resemblance to a barrel, with the staves being three ethylene units attached to two methine groups. It is the formal Diels–Alder adduct of benzene and acetylene. Due to its unusual molecular geometry, the compound is of considerable interest to theoretical chemists.

Norborneol may refer to alcohols with the norbornane skeleton:

<i>endo</i>-Norborneol Chemical compound

endo-Norborneol is an alcohol.

Fencamfamin

Fencamfamin (INN), also known as fencamfamine or by the brand names Glucoenergan and Reactivan, is a stimulant which was developed by Merck in the 1960s.

Iodolactonization is an organic reaction that forms a ring by the addition of an oxygen and iodine across a carbon-carbon double bond. It is an intramolecular variant of the halohydrin synthesis reaction. The reaction was first reported by M. J. Bougalt in 1904 and has since become one of the most effective ways to synthesize lactones. Strengths of the reaction include the mild conditions and incorporation of the versatile iodine atom into the product.

In organic chemistry, an intramolecular Diels-Alder cycloaddition is a Diels–Alder reaction in which the diene and a dienophile are both part of the same molecule. The reaction leads to the formation of the same cyclohexene-like structure as usual for a Diels–Alder reaction, but as part of a more complex fused or bridged cyclic ring system.

In the stereochemistry of ketonization of enols and enolates, theory is provided explaining the diastereoselectivity observed in the conversion of certain enols and enolates into the corresponding ketone.

The retro-Diels–Alder reaction (rDA) is the microscopic reverse of the Diels–Alder reaction—the formation of a diene and dienophile from a cyclohexene. It can be accomplished spontaneously with heat, or with acid or base mediation.

The Inverse electron demand Diels–Alder reaction, or DAINV or IEDDA is an organic chemical reaction, in which two new chemical bonds and a six-membered ring are formed. It is related to the Diels–Alder reaction, but unlike the Diels–Alder reaction, the DAINV is a cycloaddition between an electron-rich dienophile and an electron-poor diene. During a DAINV reaction, three pi-bonds are broken, and two sigma bonds and one new pi-bond are formed. A prototypical DAINV reaction is shown on the right.

Camphorsultam Chemical compound

Camphorsultam, also known as bornanesultam, is a crystalline solid primarily used as a chiral auxiliary in the synthesis of other chemicals with a specific desired stereoselectivity. Camphorsultam is commercially available in both enantiomers of its exo forms: (1R)-(+)-2,10-camphorsultam and (1S)-(−)-2,10-camphorsultam.

A descriptor is in chemical nomenclature a prefix placed before the systematic substance name, which describes the configuration or the stereochemistry of the molecule. Some listed descriptors are only of historical interest and should not be used in publications anymore as they do not correspond with the modern recommendations of the IUPAC. Stereodescriptors are often used in combination with locants to clearly identify a chemical structure unambiguously.

References

  1. Kleinfelter, Donald C.; von R. Schleyer, Paul (1962). "2-Norbananone". Organic Syntheses. 42: 79. doi:10.15227/orgsyn.042.0079.

Further reading