Extended ML

Last updated

Extended ML is a wide-spectrum language based on ML, covering both specification and implementation. It extends the syntax of ML to include axioms, which need not be executable but can rigorously specify the behavior of the program. With this addition the language can be used for stepwise refinement, proceeding gradually from an initial formal specification to eventually yield an executable Standard ML program. Correctness of the final executable with respect to the original specification can then be established by proving the correctness of each of the refinement steps. Extended ML is used for research into and teaching of formal program development and specification, and research into automatic program verification.

Extended ML is neither related to the programming language Extensible ML (other than being similarly derived from ML), nor to the specification language Extensible Markup Language (XML).

Related Research Articles

ML is a general-purpose functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the types of most expressions without requiring explicit type annotations, and ensures type safety – there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying. It is used heavily in programming language research and is one of the few languages to be completely specified and verified using formal semantics. Its types and pattern matching make it well-suited and commonly used to operate on other formal languages, such as in compiler writing, automated theorem proving, and formal verification.

Programming language Language for communicating instructions to a machine

A programming language is a formal language comprising a set of strings that produce various kinds of machine code output. Programming languages are used in computer programming to implement algorithms.

In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine reading. It typically omits details that are essential for machine understanding of the algorithm, such as variable declarations and language-specific code. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document algorithms and in planning of software and other algorithms.

A specification language is a formal language in computer science used during systems analysis, requirements analysis, and systems design to describe a system at a much higher level than a programming language, which is used to produce the executable code for a system.

In computer science, specifically software engineering and hardware engineering, formal methods are a particular kind of mathematically rigorous techniques for the specification, development and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design.

ACL2

ACL2 is a software system consisting of a programming language, an extensible theory in a first-order logic, and an automated theorem prover. ACL2 is designed to support automated reasoning in inductive logical theories, mostly for the purpose of software and hardware verification. The input language and implementation of ACL2 are written in Common Lisp. ACL2 is free and open-source software.

Software design is the process by which an agent creates a specification of a software artifact intended to accomplish goals, using a set of primitive components and subject to constraints. Software design may refer to either "all the activity involved in conceptualizing, framing, implementing, commissioning, and ultimately modifying complex systems" or "the activity following requirements specification and before programming, as ... [in] a stylized software engineering process."

A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure.

The Guarded Command Language (GCL) is a language defined by Edsger Dijkstra for predicate transformer semantics. It combines programming concepts in a compact way, before the program is written in some practical programming language. Its simplicity makes proving the correctness of programs easier, using Hoare logic.

Extensible programming is a term used in computer science to describe a style of computer programming that focuses on mechanisms to extend the programming language, compiler and runtime environment. Extensible programming languages, supporting this style of programming, were an active area of work in the 1960s, but the movement was marginalized in the 1970s. Extensible programming has become a topic of renewed interest in the 21st century.

Extensibility is a software engineering and systems design principle that provides for future growth. Extensibility is a measure of the ability to extend a system and the level of effort required to implement the extension. Extensions can be through the addition of new functionality or through modification of existing functionality. The principle provides for enhancements without impairing existing system functions.

Refinement is a generic term of computer science that encompasses various approaches for producing correct computer programs and simplifying existing programs to enable their formal verification.

In computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.

In computer science, an abstract state machine (ASM) is a state machine operating on states that are arbitrary data structures.

In computing, a programming language specification is a documentation artifact that defines a programming language so that users and implementors can agree on what programs in that language mean. Specifications are typically detailed and formal, and primarily used by implementors, with users referring to them in case of ambiguity; the C++ specification is frequently cited by users, for instance, due to the complexity. Related documentation includes a programming language reference, which is intended expressly for users, and a programming language rationale, which explains why the specification is written as it is; these are typically more informal than a specification.

Rodney Martineau "Rod" Burstall FRSE is a British computer scientist and one of four founders of the Laboratory for Foundations of Computer Science at the University of Edinburgh.

A wide-spectrum language (WSL) is a programming language designed to be simultaneously a low-level and a high-level language—possibly a non-executable specification language. Wide-spectrum languages are designed to support a programming methodology based on program refinement.

In type theory, a refinement type is a type endowed with a predicate which is assumed to hold for any element of the refined type. Refinement types can express preconditions when used as function arguments or postconditions when used as return types: for instance, the type of a function which accepts natural numbers and returns natural numbers greater than 5 may be written as . Refinement types are thus related to behavioral subtyping.

Robert Bruce Findler, colloquially known as "Robby", is an American computer scientist, currently, a professor of electrical engineering and computer science at Northwestern University. He is also a member of the PLT group and, as such, responsible for the creation and maintenance of DrRacket. In addition to DrRacket, Findler has contributed numerous components to Racket and supervises its Web-based software library, called PLaneT. Findler is also a leading team member of the ProgramByDesign project.

F* (programming language)

F* is a functional programming language inspired by ML and aimed at program verification. Its type system includes dependent types, monadic effects, and refinement types. This allows expressing precise specifications for programs, including functional correctness and security properties. The F* type-checker aims to prove that programs meet their specifications using a combination of SMT solving and manual proofs. Programs written in F* can be translated to OCaml, F#, and C for execution. Previous versions of F* could also be translated to JavaScript.

References