Extravillous trophoblasts(EVTs), are one form of differentiated trophoblast cells of the placenta. They are invasive mesenchymal cells which function to establish critical tissue connection in the developing placental-uterine interface. EVTs derive from progenitor cytotrophoblasts (CYTs), as does the other main trophoblast subtype, syncytiotrophoblast (SYN). They are sometimes called intermediate trophoblast. [1]
EVTs that derive from CYT cells on the surface of placental chorionic villi that come into contact with the uterine wall - at the placental bed - begin to express the HLA-G antigen. [2] Extravillous trophoblast (EVT) cells migrate from anchoring villi, and invade into the decidua basalis. Their main function is remodelling the uterine spiral arteries, to achieve an increase in the spiral artery diameter of from four to six times. This changes them from high-resistance low-flow vessels into large dilated vessels that provide good perfusion, and oxygenation to the developing placenta. When invasion is shallow it is inadequate, the arteries remain narrow at their openings into the intervillous space, and is the cause of pre-eclampsia, fetal growth restriction and still birth. [3] [4] [5]
EVT are a low-incidence (<5% of trophoblasts), but critical and multifunctional, subtype of trophoblast in the placenta.
As the placenta forms and the cytotrophoblast layer grows and extends, distal villous CYT differentiate to cell column CYT which eventually detach and invade deeply to the maternal decidua as interstitial EVTs. [6] These EVTs anchor placental villi to the maternal decidua. Shallow implantation of EVT is associated with poor placentation and preeclampsia. Endovascular EVTs are also major regulators of oxygenation during early placental development. Initially, they plug maternal spiral arteries to maintain hypoxia and prevent blood perfusion. [7] [8] This protects the fetus and placenta from oxidative stress during early development in the histiotrophic (glandular nutrition) stage. As fetal nutrition switches to the hemotrophic (blood-derived nutrition) stage, EVT plugs dissolve and perfusion of maternal blood begins, allowing further development of both the fetus and placenta. [9] [5]
Cells that will eventually become extraembryonic placental trophoblasts are derived from the trophectoderm. As the trophectoderm separates from the inner cell mass during blastulation, early trophoblasts begin to form the placenta. [10] Later in placental development, both interstitial and endovascular EVTs form as underlying progenitor cell column CYTs undergo epithelial to mesenchymal transition (EMT). [11] This cellular process continually occurs as the CYT layer replenishes extravillous trophoblasts. EMT of CYT to EVT in the placenta is strongly controlled by the transcription factor T-cell factor 4 (TCF4) which is Wnt-dependent. [12] Canonical Wnt signaling pathways have many downstream development-related transcription factor gene targets, including TCF4. Since developing placental trophoblasts do not necessarily follow canonical EMT, it has been suggested that a placental trophoblast-specific hybrid EMT is a separate iteration. [11]
Placental trophoblast subtypes can be distinguished by certain markers that are exclusive to each subtype. Transition from epithelial CYT to mesenchymal EVT can be tracked by a loss of E-cadherin and gain of N-cadherin. EVTs can also be distinguished by expression of human leukocyte antigen G (HLA-G), which is not expressed by other placental trophoblasts. [13] As other trophoblast subtypes in the placental are epithelial, mesenchymal markers like vimentin and fibronectin can also be used for identification. These markers, however, are not specific to EVT and can also stain stromal cells in the placenta. [13] As trophoblasts develop, they express different integrins. Whereas CYT can be identified by ITGA6, EVTs strongly express ITGA5. [14] The existing in vitro EVT models detailed below recapitulate these markers and staining to varying degrees of accuracy.
As EVTs are a critical cellular subtype of the placenta and their dysfunction is associated with a myriad of gestational illnesses, [15] they are an attractive topic for research. Acquisition of this primary cell type from sensitive tissues can be difficult and inconsistent. First and second trimester placental tissue must usually be obtained from elective abortions, a designation requiring more NIH documentation and oversight. [16] Tissue from term placentas is more readily available but cannot be used to address questions related to early development and dynamics. Dissociation of trophoblasts from other cell types in placental tissue can be procedurally difficult and pure trophoblast subtype populations take great lengths to obtain. Then, the resulting primary trophoblast cells can then only be kept in culture for a few days. Thus, there is a high demand for accurate cell lines to model primary placental trophoblasts. The immortalized cell line HTR-8/SVneo is commonly used to model EVTs. Newer multipotent trophoblast stem cell systems can be induced to differentiate into HLA-G+ EVT from CYT. [13] Systems of placental organoids can also grow invasive EVT when cultured in Matrigel. [17] Each of these options varies in their utility and accuracy to primary EVTs. As research groups continue to develop better techniques of recapitulating primary cells in vitro, proper modeling of placental EVTs remains a goal of the field.
The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ, producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth. Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.
The chorion is the outermost fetal membrane around the embryo in mammals, birds and reptiles (amniotes). It develops from an outer fold on the surface of the yolk sac, which lies outside the zona pellucida, known as the vitelline membrane in other animals. In insects it is developed by the follicle cells while the egg is in the ovary.
The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the embryoblast which subsequently forms the embryo, and an outer layer of trophoblast cells called the trophectoderm. This layer surrounds the inner cell mass and a fluid-filled cavity known as the blastocoel. In the late blastocyst the trophectoderm is known as the trophoblast. The trophoblast gives rise to the chorion and amnion, the two fetal membranes that surround the embryo. The placenta derives from the embryonic chorion and the underlying uterine tissue of the mother. The name "blastocyst" arises from the Greek βλαστός blastos and κύστις kystis. In other animals this is a structure consisting of an undifferentiated ball of cells and is called a blastula.
Gestational hypertension or pregnancy-induced hypertension (PIH) is the development of new hypertension in a pregnant woman after 20 weeks' gestation without the presence of protein in the urine or other signs of pre-eclampsia. Gestational hypertension is defined as having a blood pressure greater than 140/90 on two occasions at least 6 hours apart.
The trophoblast is the outer layer of cells of the blastocyst. Trophoblasts are present four days after fertilization in humans. They provide nutrients to the embryo and develop into a large part of the placenta. They form during the first stage of pregnancy and are the first cells to differentiate from the fertilized egg to become extraembryonic structures that do not directly contribute to the embryo. After blastulation, the trophoblast is contiguous with the ectoderm of the embryo and is referred to as the trophectoderm. After the first differentiation, the cells in the human embryo lose their totipotency because they can no longer form a trophoblast. They become pluripotent stem cells.
Soluble fms-like tyrosine kinase-1 is a tyrosine kinase protein with antiangiogenic properties. A non-membrane associated splice variant of VEGF receptor 1 (Flt-1), sFlt-1 binds the angiogenic factors VEGF and PlGF, reducing blood vessel growth through reduction of free VEGF and PlGF concentrations. In humans, sFlt-1 is important in the regulation of blood vessel formation in diverse tissues, including the kidneys, cornea, and uterus. Abnormally high levels of sFlt-1 have been implicated in the pathogenesis of preeclampsia.
The decidua is the modified mucosal lining of the uterus that forms every month, in preparation for pregnancy. It is shed off each month when there is no fertilised egg to support. The decidua is under the influence of progesterone. Endometrial cells become highly characteristic. The decidua forms the maternal part of the placenta and remains for the duration of the pregnancy. After birth the decidua is shed together with the placenta.
Syncytiotrophoblast is the epithelial covering of the highly vascular embryonic placental villi, which invades the wall of the uterus to establish nutrient circulation between the embryo and the mother. It is a multinucleate, terminally differentiated syncytium, extending to 13 cm.
Placenta accreta occurs when all or part of the placenta attaches abnormally to the myometrium. Three grades of abnormal placental attachment are defined according to the depth of attachment and invasion into the muscular layers of the uterus:
"Cytotrophoblast" is the name given to both the inner layer of the trophoblast or the cells that live there. It is interior to the syncytiotrophoblast and external to the wall of the blastocyst in a developing embryo.
Implantation (nidation) is the stage in the embryonic development of mammals in which the blastocyst hatches as the embryo, adheres, and invades into the wall of the female's uterus. Implantation is the first stage of gestation, and, when successful, the female is considered to be pregnant. In a woman, an implanted embryo is detected by the presence of increased levels of human chorionic gonadotropin (hCG) in a pregnancy test. The implanted embryo will receive oxygen and nutrients in order to grow.
Decidualization is a process that results in significant changes to cells of the endometrium in preparation for, and during, pregnancy. This includes morphological and functional changes to endometrial stromal cells (ESCs), the presence of decidual white blood cells (leukocytes), and vascular changes to maternal arteries. The sum of these changes results in the endometrium changing into a structure called the decidua. In humans, the decidua is shed during childbirth.
Placental growth factor(PlGF) is a protein that in humans is encoded by the PGF gene.
Syncytin-1 also known as enverin is a protein found in humans and other primates that is encoded by the ERVW-1 gene. Syncytin-1 is a cell-cell fusion protein whose function is best characterized in placental development. The placenta in turn aids in embryo attachment to the uterus and establishment of a nutrient supply.
A placental disease is any disease, disorder, or pathology of the placenta.
The fetal membranes are the four extraembryonic membranes, associated with the developing embryo, and fetus in humans and other mammals. They are the amnion, chorion, allantois, and yolk sac. The amnion and the chorion are the chorioamniotic membranes that make up the amniotic sac which surrounds and protects the embryo. The fetal membranes are four of six accessory organs developed by the conceptus that are not part of the embryo itself, the other two are the placenta, and the umbilical cord.
Intermediate trophoblast is a distinct subtype of trophoblastic tissue that arises from the cytotrophoblast.
Preimplantation factor(PIF) is a peptide secreted by trophoblast cells prior to placenta formation in early embryonic development. Human embryos begin to express PIF at the 4-cell stage, with expression increasing by the morula stage and continuing to do so throughout the first trimester. Expression of preimplantation factor in the blastocyst was discovered as an early correlate of the viability of the eventual pregnancy. Preimplantation factor was identified in 1994 by a lymphocyte platelet-binding assay, where it was thought to be an early biomarker of pregnancy. It has a simple primary structure with a short sequence of fifteen amino acids without any known quaternary structure. A synthetic analogue of preimplantation factor (commonly abbreviated in studies as sPIF or PIF*) that has an identical amino acid sequence and mimics the normal biological activity of PIF has been developed and is commonly used in research studies, particularly those that aim to study potential adult therapeutics.
Uterine natural killer cells make up approximately 70% of maternal lymphocytes during pregnancy, occupying both the decidua basalis of the endometrium at the implantation site and the mesometrial lymphoid aggregate of pregnancy (MLAp) that surrounds the blood vessels supplying the placenta. This number is at its peak in early pregnancy but declines at parturition.
Raissa Nitabuch was a Russian pathologist who is known for her histological studies of the human placenta. The layer of fibrin that was thought to separate the uterine decidua from the fetoplacental trophoblast after birth was named the Nitabuch layer or Nitabuch membrane, thus becoming the only woman whose name is "affiliated with a macroscopic anatomical structure."