FERMT3

Last updated

FERMT3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FERMT3 , KIND3, MIG-2, MIG2B, UNC112C, URP2, URP2SF, fermitin family member 3, FERM domain containing kindlin 3
External IDs OMIM: 607901; MGI: 2147790; HomoloGene: 12877; GeneCards: FERMT3; OMA:FERMT3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_153795
NM_001362399

RefSeq (protein)

NP_722490
NP_001349328

Location (UCSC) Chr 11: 64.21 – 64.22 Mb Chr 19: 6.98 – 7 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Fermitin family homolog 3) (FERMT3), also known as kindlin-3 (KIND3), MIG2-like protein (MIG2B), or unc-112-related protein 2 (URP2) is a protein that in humans is encoded by the FERMT3 gene. [5] [6] [7] The kindlin family of proteins, member of the B4.1 superfamily, comprises three conserved protein homologues, kindlin 1, 2, and 3. They each contain a bipartite FERM domain comprising four subdomains F0, F1, F2, and F3 that show homology with the FERM head (H) domain of the cytoskeletal Talin protein. Kindlins have been linked to Kindler syndrome, leukocyte adhesion deficiency, cancer and other acquired human diseases. They are essential in the organisation of focal adhesions that mediate cell-extracellular matrix junctions and are involved in other cellular compartments that control cell-cell contacts and nucleus functioning. Therefore, they are responsible for cell to cell crosstalk via cell-cell contacts and integrin mediated cell adhesion through focal adhesion proteins and as specialised adhesion structures of hematopoietic cells they are also present in podosome's F actin surrounding ring structure. Isoform 2 may act as a repressor of NF-kappa-B and apoptosis [8]

Contents

FERMT-3 protein sequence FERMT-3 PROTEIN SEQUENCE.png
FERMT-3 protein sequence

Evolution

It has been suggested that the evolutionary source of a single ancestral Kindlin protein is the earliest metazoa, the Parazoa. Within vertebrates, these ancestral proteins were subjected to duplication processes in order to arrive at the actual Kindlin family. In comparison with other members of the B4.1 superfamily of proteins, the FERM domains in Kindlin homologues have a greater degree of conservation. [9] The presence of an inserted pleckstrin homology domain within the FERM domain, suggests that the metazoan evolution of the FERM domain is the origination from a proto-talin protein in unicellular or proto-multicellular organisms. [9] [10]

Function

FERMT 3 Structure FERMT 3 Structure.jpg
FERMT 3 Structure

The FERMT3 protein has a key role in the regulation of hemostasis and thrombosis. [10] This protein may also help maintain the membrane skeleton of erythrocytes. [5] Kindlin 3 is a cytoskeletal signalling protein involved in the activation of the glycoprotein receptor, integrin. [11] Together with the Talin protein it binds cooperatively to beta integrin's cytoplasmic domain causing tail reorientation, thus altering the molecule's conformation. [12] Modification of integrin's conformation serves to dissociate alpha and beta subunits by disrupting their interactions and helping the molecule adopt a high affinity state. [9] FERMT3 functions as a stabilizer of the cytoskeleton and regulates its dynamics in cell and organelle motility. [13]

Clinical significance

FERMT3 mutations can result in autosomal recessive leukocyte adhesion deficiency syndrome-III (LAD-III). [5] a deficiency in beta1, beta2 and beta3 integrin activation in platelets and leukocytes that causes haemorrhaging and recurrent infections. [10] Loss of FERMT3 expression in leukocytes compromises their adhesion to the inflamed endothelia and affects neutrophil binding and spreading while selectin mediated rolling is unaffected. [14] It has also been found that FERMT3 lowers Natural Killer cell’s activation threshold, such that a loss of FERMT3 affects single receptor activation of NK cell-mediated cytotoxicity but has no impact on multiple receptors, where the protein deficiency is overcome and target cells are killed. [15]

FERMT3 deficiency on β(2) integrin function depend on both cell type (Natural killer cell or Leukocytes) and the integrin activation stimulus. [16] The prevention of the beta-3 activation is specifically related to LAD-3, causing Glanzmann's thrombasthenia symptoms, a condition in which patients bleed excessively. [17] Leukocyte adhesion deficiency is diagnosed clinically and by complete blood counts that reveal leukocytosis with neutrophilia. [16] Management and treatment of this disease aim to control these recurrent infections by antibiotics and blood transfusions, with bone marrow transplantation as the only curative measure.[ non-primary source needed ] Failure to express the FERMT3 protein disrupts the ability to form clots and coagulate by preventing integrin αIIβ3-mediated platelet aggregation. [10]

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that help cell–cell and cell–extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Cell adhesion</span> Process of cell attachment

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.

<span class="mw-page-title-main">Vinculin</span> Mammalian protein found in Homo sapiens

In mammalian cells, vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting proteins involved in anchoring F-actin to the membrane.

Leukocyte adhesion deficiency (LAD) is a rare autosomal recessive disorder characterized by immunodeficiency resulting in recurrent infections. LAD is currently divided into three subtypes: LAD1, LAD2, and the recently described LAD3, also known as LAD-1/variant. In LAD3, the immune defects are supplemented by a Glanzmann thrombasthenia-like bleeding tendency.

<span class="mw-page-title-main">CD31</span> Mammalian protein found in Homo sapiens

Platelet endothelial cell adhesion molecule (PECAM-1) also known as cluster of differentiation 31 (CD31) is a protein that in humans is encoded by the PECAM1 gene found on chromosome17q23.3. PECAM-1 plays a key role in removing aged neutrophils from the body.

<span class="mw-page-title-main">ICAM-1</span> Mammalian protein found in Homo sapiens

ICAM-1 also known as CD54 is a protein that in humans is encoded by the ICAM1 gene. This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by rhinovirus as a receptor for entry into respiratory epithelium.

<span class="mw-page-title-main">VCAM-1</span> Protein-coding gene in the species Homo sapiens

Vascular cell adhesion protein 1 also known as vascular cell adhesion molecule 1 (VCAM-1) or cluster of differentiation 106 (CD106) is a protein that in humans is encoded by the VCAM1 gene. VCAM-1 functions as a cell adhesion molecule.

<span class="mw-page-title-main">Integrin alpha X</span> Mammalian protein found in Homo sapiens

CD11c, also known as Integrin, alpha X (ITGAX), is a gene that encodes for CD11c.

<span class="mw-page-title-main">Integrin alpha L</span> Mammalian protein found in Homo sapiens

Integrin, alpha L , also known as ITGAL, is a protein that in humans is encoded by the ITGAL gene. CD11a functions in the immune system. It is involved in cellular adhesion and costimulatory signaling. It is the target of the drug efalizumab.

Lymphocyte function-associated antigen 1 (LFA-1) is an integrin found on lymphocytes and other leukocytes. LFA-1 plays a key role in emigration, which is the process by which leukocytes leave the bloodstream to enter the tissues. LFA-1 also mediates firm arrest of leukocytes. Additionally, LFA-1 is involved in the process of cytotoxic T cell mediated killing as well as antibody mediated killing by granulocytes and monocytes. As of 2007, LFA-1 has 6 known ligands: ICAM-1, ICAM-2, ICAM-3, ICAM-4, ICAM-5, and JAM-A. LFA-1/ICAM-1 interactions have recently been shown to stimulate signaling pathways that influence T cell differentiation. LFA-1 belongs to the integrin superfamily of adhesion molecules.

<span class="mw-page-title-main">Integrin-linked kinase</span> Protein-coding gene in the species Homo sapiens

Integrin-linked kinase is an enzyme that in humans is encoded by the ILK gene involved with integrin-mediated signal transduction. Mutations in ILK are associated with cardiomyopathies. It is a 59kDa protein originally identified in a yeast-two hybrid screen with integrin β1 as the bait protein. Since its discovery, ILK has been associated with multiple cellular functions including cell migration, proliferation, and adhesion.

<span class="mw-page-title-main">Integrin beta 2</span> Mammalian protein found in Homo sapiens

In molecular biology, CD18 is an integrin beta chain protein that is encoded by the ITGB2 gene in humans. Upon binding with one of a number of alpha chains, CD18 is capable of forming multiple heterodimers, which play significant roles in cellular adhesion and cell surface signaling, as well as important roles in immune responses. CD18 also exists in soluble, ligand binding forms. Deficiencies in CD18 expression can lead to adhesion defects in circulating white blood cells in humans, reducing the immune system's ability to fight off foreign invaders.

Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell–substratum contact and, in lymphocytes, at cell–cell contacts. Discovered in 1983 by Keith Burridge and colleagues, talin is a ubiquitous cytosolic protein that is found in high concentrations in focal adhesions. It is capable of linking integrins to the actin cytoskeleton either directly or indirectly by interacting with vinculin and α-actinin.

<span class="mw-page-title-main">Leukocyte extravasation</span> Movement of white blood cells out of blood vessels and towards the inflamed site

In immunology, leukocyte extravasation is the movement of leukocytes out of the circulatory system (extravasation) and towards the site of tissue damage or infection. This process forms part of the innate immune response, involving the recruitment of non-specific leukocytes. Monocytes also use this process in the absence of infection or tissue damage during their development into macrophages.

<span class="mw-page-title-main">PTK2</span> Protein-coding gene in humans

PTK2 protein tyrosine kinase 2 (PTK2), also known as focal adhesion kinase (FAK), is a protein that, in humans, is encoded by the PTK2 gene. PTK2 is a focal adhesion-associated protein kinase involved in cellular adhesion and spreading processes. It has been shown that when FAK was blocked, breast cancer cells became less metastatic due to decreased mobility.

<span class="mw-page-title-main">ICAM3</span> Mammalian protein found in Homo sapiens

Intercellular adhesion molecule 3 (ICAM3) also known as CD50, is a protein that in humans is encoded by the ICAM3 gene. The protein is constitutively expressed on the surface of leukocytes, which are also called white blood cells and are part of the immune system. ICAM3 mediates adhesion between cells by binding to specific integrin receptors. It plays an important role in the immune cell response through its facilitation of interactions between T cells and dendritic cells, which allows for T cell activation. ICAM3 also mediates the clearance of cells undergoing apoptosis by attracting and binding macrophages, a type of cell that breaks down infected or dying cells through a process known as phagocytosis, to apoptotic cells.

<span class="mw-page-title-main">TLN1</span> Protein-coding gene in the species Homo sapiens

Talin-1 is a protein that in humans is encoded by the TLN1 gene. Talin-1 is ubiquitously expressed, and is localized to costamere structures in cardiac and skeletal muscle cells, and to focal adhesions in smooth muscle and non-muscle cells. Talin-1 functions to mediate cell-cell adhesion via the linkage of integrins to the actin cytoskeleton and in the activation of integrins. Altered expression of talin-1 has been observed in patients with heart failure, however no mutations in TLN1 have been linked with specific diseases.

<span class="mw-page-title-main">FERMT2</span> Protein-coding gene in the species Homo sapiens

Fermitin family homolog 2 (FERMT2) also known as pleckstrin homology domain-containing family C member 1 (PLEKHC1) or kindlin-2 is a protein that in humans is encoded by the FERMT2 gene.

<span class="mw-page-title-main">TLN2</span> Protein-coding gene in the species Homo sapiens

Talin-2 is a protein in humans that is encoded by the TLN2 gene. It belongs to the talin protein family. This gene encodes a protein related to talin-1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments. Talin-2 is expressed at high levels in cardiac muscle and functions to provide linkages between the extracellular matrix and actin cytoskeleton at costamere structures to transduce force laterally.

<span class="mw-page-title-main">Nancy Hogg</span> Immunologist

Nancy Hogg FMedSci is an immunologist who has made major contributions in the field of adhesion molecules, focusing on the integrins expressed by leukocytes. Hogg was elected to the Academy of Medical Sciences in 2002 and currently holds an emeritus position at the Francis Crick Institute, London.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000149781 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024965 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: fermitin family homolog 3 (Drosophila)".
  6. Weinstein EJ, Bourner M, Head R, Zakeri H, Bauer C, Mazzarella R (April 2003). "URP1: a member of a novel family of PH and FERM domain-containing membrane-associated proteins is significantly over-expressed in lung and colon carcinomas". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1637 (3): 207–16. doi:10.1016/S0925-4439(03)00035-8. PMID   12697302.
  7. Boyd RS, Adam PJ, Patel S, Loader JA, Berry J, Redpath NT, Poyser HR, Fletcher GC, Burgess NA, Stamps AC, Hudson L, Smith P, Griffiths M, Willis TG, Karran EL, Oscier DG, Catovsky D, Terrett JA, Dyer MJ (August 2003). "Proteomic analysis of the cell-surface membrane in chronic lymphocytic leukemia: identification of two novel proteins, BCNP1 and MIG2B". Leukemia. 17 (8): 1605–12. doi:10.1038/sj.leu.2402993. PMID   12886250. S2CID   32140559.
  8. Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ, Podrez EA, Tosi M, Lennon DP, Caplan AI, Shurin SB, Plow EF, Byzova TV (March 2009). "A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans". Nature Medicine. 15 (3): 313–8. doi:10.1038/nm.1917. PMC   2857384 . PMID   19234460.
  9. 1 2 3 Ali RH, Khan AA (November 2014). "Tracing the evolution of FERM domain of Kindlins". Molecular Phylogenetics and Evolution. 80: 193–204. Bibcode:2014MolPE..80..193A. doi:10.1016/j.ympev.2014.08.008. PMID   25150025.
  10. 1 2 3 4 Lai-Cheong JE, Parsons M, McGrath JA (May 2010). "The role of kindlins in cell biology and relevance to human disease". The International Journal of Biochemistry & Cell Biology. 42 (5): 595–603. doi:10.1016/j.biocel.2009.10.015. PMID   19854292.
  11. Danen EHJ (2000–13). Integrins: An Overview of Structural and Functional Aspects. Madame Curie Bioscience Database. Landes Bioscience.
  12. Rognoni E, Ruppert R, Fässler R (January 2016). "The kindlin family: functions, signaling properties and implications for human disease". Journal of Cell Science. 129 (1): 17–27. doi: 10.1242/jcs.161190 . PMID   26729028.
  13. Sun Z, Costell M, Fässler R (January 2019). "Integrin activation by talin, kindlin and mechanical forces". Nature Cell Biology. 21 (1): 25–31. doi:10.1038/s41556-018-0234-9. PMID   30602766. S2CID   57373556.
  14. Stadtmann A, Zarbock A (January 2017). "The role of kindlin in neutrophil recruitment to inflammatory sites". Current Opinion in Hematology. 24 (1): 38–45. doi:10.1097/MOH.0000000000000294. PMID   27749372. S2CID   24844044.
  15. Fagerholm SC, Lek HS, Morrison VL (2014). "Kindlin-3 in the immune system". American Journal of Clinical and Experimental Immunology. 3 (1): 37–42. PMC   3960760 . PMID   24660120.
  16. 1 2 Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, Moser M, Metin A, Fried M, Tomlinson I, Hogg N (March 2009). "Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation". Nature Medicine. 15 (3): 306–12. doi:10.1038/nm.1931. PMC   2680140 . PMID   19234463.
  17. Karaköse E, Schiller HB, Fässler R (July 2010). "The kindlins at a glance". Journal of Cell Science. 123 (Pt 14): 2353–6. doi:10.1242/jcs.064600. PMID   20592181. S2CID   7904715.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.