Fay-Riddell equation

Last updated

The Fay-Riddell equation is a fundamental relation in the fields of aerospace engineering and hypersonic flow, which provides a method to estimate the stagnation point heat transfer rate on a blunt body moving at hypersonic speeds in dissociated air. [1] The heat flux for a spherical nose is computed according to quantities at the wall and the edge of an equilibrium boundary layer.

Contents

where is the Prandtl number, is the Lewis number, is the stagnation enthalpy at the boundary layer's edge, is the wall enthalpy, is the enthalpy of dissociation, is the air density, is the dynamic viscosity, and is the velocity gradient at the stagnation point. According to Newtonian hypersonic flow theory, the velocity gradient should be:where is the nose radius, is the pressure at the edge, and is the free stream pressure. The equation was developed by James Fay and Francis Riddell in the late 1950s. Their work addressed the critical need for accurate predictions of aerodynamic heating to protect spacecraft during re-entry, and is considered to be a pioneering work in the analysis of chemically reacting viscous flow. [2]

Assumptions

The Fay-Riddell equation is derived under several assumptions:

  1. Hypersonic Flow: The equation is applicable for flows where the Mach number is significantly greater than 5.
  2. Continuum Flow: It assumes the flow can be treated as a continuum, which is valid at higher altitudes with sufficient air density.
  3. Thermal and Chemical Equilibrium: The gas is assumed to be in thermal and chemical equilibrium, meaning the energy modes (translational, rotational, vibrational) and chemical reactions reach a steady state.
  4. Blunt Body Geometry: The equation is most accurate for blunt body geometries where the leading edge radius is large compared to the boundary layer thickness.

Extensions

While the Fay-Riddell equation was derived for an equilibrium boundary layer, it is possible to extend the results to a chemically frozen boundary layer with either an equilibrium catalytic wall or a noncatalytic wall. [2]

Applications

The Fay-Riddell equation is widely used in the design and analysis of thermal protection systems for re-entry vehicles. [3] [4] [5] It provides engineers with a crucial tool for estimating the severe aerodynamic heating conditions encountered during atmospheric entry and for designing appropriate thermal protection measures.

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Scale height</span> Distance over which a quantity decreases by a factor of e

In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance over which a physical quantity decreases by a factor of e.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Hayashi track</span> Luminosity–temperature relationship in stars

The Hayashi track is a luminosity–temperature relationship obeyed by infant stars of less than 3 M in the pre-main-sequence phase of stellar evolution. It is named after Japanese astrophysicist Chushiro Hayashi. On the Hertzsprung–Russell diagram, which plots luminosity against temperature, the track is a nearly vertical curve. After a protostar ends its phase of rapid contraction and becomes a T Tauri star, it is extremely luminous. The star continues to contract, but much more slowly. While slowly contracting, the star follows the Hayashi track downwards, becoming several times less luminous but staying at roughly the same surface temperature, until either a radiative zone develops, at which point the star starts following the Henyey track, or nuclear fusion begins, marking its entry onto the main sequence.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

Volume viscosity is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions, and the corresponding SI unit is the pascal-second (Pa·s).

In theoretical physics, the Madelung equations, or the equations of quantum hydrodynamics, are Erwin Madelung's equivalent alternative formulation of the Schrödinger equation, written in terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics. The derivation of the Madelung equations is similar to the de Broglie–Bohm formulation, which represents the Schrödinger equation as a quantum Hamilton–Jacobi equation.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Hagen in 1839 and then by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels with the same boundary conditions and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the underlying Navier-Stokes equation, with geometrically similar bodies, equal Reynolds and Womersley Numbers the functions of velocity (u’,v’,w’) and pressure (P’) for any variation of flow.

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary layer that forms on a wedge

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

In quantum mechanics, a Dirac membrane is a model of a charged membrane introduced by Paul Dirac in 1962. Dirac's original motivation was to explain the mass of the muon as an excitation of the ground state corresponding to an electron. Anticipating the birth of string theory by almost a decade, he was the first to introduce what is now called a type of Nambu–Goto action for membranes.

References

  1. Fay, J. A.; Riddell, F. R. (1958). "Theory of Stagnation Point Heat Transfer in Dissociated Air". Journal of the Aerospace Sciences. 25 (2): 73–85. doi:10.2514/8.7517. ISSN   1936-9999.
  2. 1 2 Anderson, Jr., John D. (2019). Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series (3rd ed.). American Institute of Aeronautics and Astronautics. pp. 754–764. ISBN   978-1-62410-514-2.
  3. Li, Peng; Gao, Zhenxun (2014-08-04). "An Engineering Method of Aerothermodynamic Environments Prediction for Complex Reentry Configurations". AIAA SPACE 2014 Conference and Exposition. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2014-4414. ISBN   978-1-62410-257-8.
  4. Zuppardi, Gennaro; Verde, Gianpaolo (1998). "Improved Fay-Riddell Procedure to Compute the Stagnation Point Heat Flux". Journal of Spacecraft and Rockets. 35 (3): 403–405. doi:10.2514/2.3342. ISSN   0022-4650.
  5. Papadopoulos, Periklis; Subrahmanyam, Prabhakar (2005-05-16). "Computational Investigation and Simulation of Aerothermodynamics of Reentry Vehicles". AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2005-3206. ISBN   978-1-62410-068-0.