Feedforward (behavioral and cognitive science)

Last updated

Feedforward, Behavior and Cognitive Science is a method of teaching and learning that illustrates or indicates a desired future behavior or path to a goal. [1] Feedforward provides information, images, etc. exclusively about what one could do right in the future, often in contrast to what one has done in the past. The feedforward method of teaching and learning is in contrast to its opposite, feedback, concerning human behavior because it focuses on learning in the future, whereas feedback uses information from a past event to provide reflection and the basis for behaving and thinking differently. In isolation, feedback is the least effective form of instruction, according to US Department of Defense studies in the 1980s. Feedforward was coined by I.A Richards in 1951, and applied in the behavioral and cognitive sciences in 1976 by Peter W. Dowrick in his dissertation. [2]

Feedforward in behavioral and cognitive science may be defined as "images of adaptive future behavior, hitherto not mastered"; images capable of triggering that behavior in a challenging context. Feedforward is created by restructuring current component behaviors into what appears to be a new skill or level of performance.

One concept of feedforward originated in behavioral science. Related concepts have emerged in biology, cybernetics, and management sciences. The understanding of feedforward help the understanding of brain function and rapid learning. The concept contributed to research and development of video self modeling (VSM). The most productive advances in feedforward came from its association with videos that showed adaptive behavior (see Dowrick, 1983, pp. 111, 121; 1991, pp. 110–3, 120-2, 240-1; 1999, esp. pp. 25–26). [3] [4] For example, a boy with autism role-plays squeezing a ball (stress management technique) instead of having a tantrum when his work is found imperfect by the teacher – or a selectively mute child is seen on video talking at school, by editing in footage of her talking at home (location disguised by use of a classroom backdrop). By selectively editing a video, a clip was made that demonstrated the desired behavior and allowed the children to learn from their future successes.

By reference to its historical context of VSM, it became recognized that feedforward comprised component behaviors already in the repertoire, and that it could exist in forms other than videos. In fact, feedforward exists as images in the brain, and VSM is just one of many ways to create these simulations. The videos are very short – the best are 1 or 2 minutes long, and achieve changes in behavior very rapidly. Under the right conditions, a very few viewings of these videos can produce skill acquisitions or changes in performance that typically take months and have been resistant to change by other methods. The boy with autism and the girl with selective mutism, mentioned above, are good examples. Further examples can be found in journal articles, [5] [6] [7] and on the web (e.g., in sport [8] ).

The evidence for ultra-rapid learning, built from component behaviors that are reconfigured to appear as new skills, indicates the feedforward self model mechanism existing in the brain to control our future behavior. [9] That is, if the conditions of learning are right, the brain takes pieces of existing skills, puts them together in new ways or in a different context, to produce a future image and a future response. Thus we learn from the future – more rapidly than we learn from the past. Further evidence comes from cognitive processes dubbed "mental time travel" [10] and for parts of the hippocampus etc. where they occur. [11] However, the links between these hot spots in the brain and feedforward learning have yet to be confirmed.

Feedforward concepts have become established in at least four areas of science, and they continue to spread. Feedforward often works in concert with feedback loops for guidance systems in cybernetics or self-control in biology [ citation needed ].

Feedforward in management theory enables the prediction and control of organizational behavior. [12] These concepts have developed during and since the 1990s.

Related Research Articles

<span class="mw-page-title-main">Learning theory (education)</span> Theory that describes how students receive, process, and retain knowledge during learning

Learning theory describes how students receive, process, and retain knowledge during learning. Cognitive, emotional, and environmental influences, as well as prior experience, all play a part in how understanding, or a worldview, is acquired or changed and knowledge and skills retained.

Psychology is an academic and applied discipline involving the scientific study of human mental functions and behavior. Occasionally, in addition or opposition to employing the scientific method, it also relies on symbolic interpretation and critical analysis, although these traditions have tended to be less pronounced than in other social sciences, such as sociology. Psychologists study phenomena such as perception, cognition, emotion, personality, behavior, and interpersonal relationships. Some, especially depth psychologists, also study the unconscious mind.

In psychology, cognitivism is a theoretical framework for understanding the mind that gained credence in the 1950s. The movement was a response to behaviorism, which cognitivists said neglected to explain cognition. Cognitive psychology derived its name from the Latin cognoscere, referring to knowing and information, thus cognitive psychology is an information-processing psychology derived in part from earlier traditions of the investigation of thought and problem solving.

Social learning is a theory of learning process social behavior which proposes that new behaviors can be acquired by observing and imitating others. It states that learning is a cognitive process that takes place in a social context and can occur purely through observation or direct instruction, even in the absence of motor reproduction or direct reinforcement. In addition to the observation of behavior, learning also occurs through the observation of rewards and punishments, a process known as vicarious reinforcement. When a particular behavior is rewarded regularly, it will most likely persist; conversely, if a particular behavior is constantly punished, it will most likely desist. The theory expands on traditional behavioral theories, in which behavior is governed solely by reinforcements, by placing emphasis on the important roles of various internal processes in the learning individual.

In psychology, theory of mind refers to the capacity to understand other people by ascribing mental states to them. A theory of mind includes the knowledge that others' beliefs, desires, intentions, emotions, and thoughts may be different from one's own. Possessing a functional theory of mind is considered crucial for success in everyday human social interactions. People utilise a theory of mind when analyzing, judging, and inferring others' behaviors. The discovery and development of theory of mind primarily came from studies done with animals and infants. Factors including drug and alcohol consumption, language development, cognitive delays, age, and culture can affect a person's capacity to display theory of mind. Having a theory of mind is similar to but not identical with having the capacity for empathy or sympathy.

The psychology of learning refers to theories and research on how individuals learn. There are many theories of learning. Some take on a more behaviorist approach which focuses on inputs and reinforcements. Other approaches, such as theories related to neuroscience and social cognition, focus more on how the brain's organization and structure influence learning. Some psychological approaches, such as social constructivism, focus more on one's interaction with the environment and with others. Other theories, such as those related to motivation, like the growth mindset, focus more on individuals' perceptions of ability.

Visual processing is a term that is used to refer to the brain's ability to use and interpret visual information from the world around us. The process of converting light energy into a meaningful image is a complex process that is facilitated by numerous brain structures and higher level cognitive processes. On an anatomical level, light energy first enters the eye through the cornea, where the light is bent. After passing through the cornea, light passes through the pupil and then lens of the eye, where it is bent to a greater degree and focused upon the retina. The retina is where a group of light-sensing cells, called photoreceptors are located. There are two types of photoreceptors: rods and cones. Rods are sensitive to dim light and cones are better able to transduce bright light. Photoreceptors connect to bipolar cells, which induce action potentials in retinal ganglion cells. These retinal ganglion cells form a bundle at the optic disc, which is a part of the optic nerve. The two optic nerves from each eye meet at the optic chiasm, where nerve fibers from each nasal retina cross which results in the right half of each eye's visual field being represented in the left hemisphere and the left half of each eye's visual fields being represented in the right hemisphere. The optic tract then diverges into two visual pathways, the geniculostriate pathway and the tectopulvinar pathway, which send visual information to the visual cortex of the occipital lobe for higher level processing.

Self-knowledge is a term used in psychology to describe the information that an individual draws upon when finding answers to the questions "What am I like?" and "Who am I?".

The cognitive revolution was an intellectual movement that began in the 1950s as an interdisciplinary study of the mind and its processes. It later became known collectively as cognitive science. The relevant areas of interchange were between the fields of psychology, linguistics, computer science, anthropology, neuroscience, and philosophy. The approaches used were developed within the then-nascent fields of artificial intelligence, computer science, and neuroscience. In the 1960s, the Harvard Center for Cognitive Studies and the Center for Human Information Processing at the University of California, San Diego were influential in developing the academic study of cognitive science. By the early 1970s, the cognitive movement had surpassed behaviorism as a psychological paradigm. Furthermore, by the early 1980s the cognitive approach had become the dominant line of research inquiry across most branches in the field of psychology.

<span class="mw-page-title-main">Stephen Grossberg</span> American scientist (born 1939)

Stephen Grossberg is a cognitive scientist, theoretical and computational psychologist, neuroscientist, mathematician, biomedical engineer, and neuromorphic technologist. He is the Wang Professor of Cognitive and Neural Systems and a Professor Emeritus of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering at Boston University.

<span class="mw-page-title-main">Executive functions</span> Cognitive processes necessary for control of behavior

In cognitive science and neuropsychology, executive functions are a set of cognitive processes that are necessary for the cognitive control of behavior: selecting and successfully monitoring behaviors that facilitate the attainment of chosen goals. Executive functions include basic cognitive processes such as attentional control, cognitive inhibition, inhibitory control, working memory, and cognitive flexibility. Higher-order executive functions require the simultaneous use of multiple basic executive functions and include planning and fluid intelligence.

<span class="mw-page-title-main">Outline of thought</span> Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

Social cognitive theory (SCT), used in psychology, education, and communication, holds that portions of an individual's knowledge acquisition can be directly related to observing others within the context of social interactions, experiences, and outside media influences. This theory was advanced by Albert Bandura as an extension of his social learning theory. The theory states that when people observe a model performing a behavior and the consequences of that behavior, they remember the sequence of events and use this information to guide subsequent behaviors. Observing a model can also prompt the viewer to engage in behavior they already learned. Depending on whether people are rewarded or punished for their behavior and the outcome of the behavior, the observer may choose to replicate behavior modeled. Media provides models for a vast array of people in many different environmental settings.

<span class="mw-page-title-main">Cybernetics</span> Transdisciplinary field concerned with regulatory and purposive systems

Cybernetics is a wide-ranging field concerned with circular causal processes such as feedback. The field is named after an example of circular causal feedback—that of steering a ship. In steering a ship, the helmsperson adjusts their steering in continual response to the effect it is observed as having, forming a feedback loop through which a steady course can be maintained in a changing environment, responding to disturbances from cross winds and tide. Cybernetics is concerned with the principles of circular causal processes such as steering however they are embodied, including in ecological, technological, biological, cognitive and social systems and also in the context of practical activities such as designing, learning, managing, etc. Cybernetics' transdisciplinary character has meant that it intersects with a number of other fields, leading to it having both wide influence and diverse interpretations.

<span class="mw-page-title-main">Video modeling</span> Teaching method

Video modeling (VM) is a mode of teaching that uses video recording and display equipment to provide a visual model of the targeted behaviors or skill. In video self-modeling (VSM), individuals observe themselves performing a behavior successfully on video, and then imitate the targeted behavior. Video modeling has been used to teach many skills, including social skills, communication, and athletic performance; it has shown promise as an intervention for children with autism spectrum disorders (ASD). Important practical and theoretical questions remain largely unanswered about video modeling and other forms of video-based intervention. Video modeling has theoretical roots in the social learning theory work of Bandura (1969), which called attention to the ability to learn through observation.

Feedforward is the provision of context of what one wants to communicate prior to that communication.


Video self-modeling (VSM) is a form of observational learning in which individuals observe themselves performing a behavior successfully on video, and then imitate the targeted behavior. VSM allows individuals to view themselves being successful, acting appropriately, or performing new tasks. Peter Dowrick, a key researcher in the development of self-modeling, described two forms of VSM, feedforward and self-review. Self-review involves someone with a relatively well developed skill watching examples of best performance. A good example of this is the procedure used by Laura Wilkinson, gold medal platform diver, prior to every meet. In an interview after her gold medal performance, she was asked how she prepares for competition. She said that she watches a video that consists of her best dives along with encouragement from family and coaches. Self-review is mainly used in sports training as a form of visual imaging. Feedforward, on the other hand, is used with people who do not have a skill or when a new skill is emerging. Thus, feedforward is the method most often used in instructional or clinical settings. Because Feedforward involves new skills or behaviors performed by the viewer, it usually requires some degree of video editing to make it appear that the viewer is performing in an advanced manner. The term feedforward can be contrasted with the more traditional term feedback as it relates to receiving information about performance. Feedback allows people to see how they are doing. Feedforward allows them to see how they could be performing; a future self. Feedforward is mainly used in education and therapy circles and mainly with children with disabilities. It has been found to be especially effective with children with autism who tend to be visual learners and who seem to attend better to monitors than to live models.

Autonomous agency theory (AAT) is a viable system theory (VST) which models autonomous social complex adaptive systems. It can be used to model the relationship between an agency and its environment(s), and these may include other interactive agencies. The nature of that interaction is determined by both the agency's external and internal attributes and constraints. Internal attributes may include immanent dynamic "self" processes that drive agency change.

In neuroscience, predictive coding is a theory of brain function which postulates that the brain is constantly generating and updating a "mental model" of the environment. According to the theory, such a mental model is used to predict input signals from the senses that are then compared with the actual input signals from those senses. With the rising popularity of representation learning, the theory is being actively pursued and applied in machine learning and related fields.

Feedforward is the provision of context of what one wants to communicate prior to that communication. In purposeful activity, feedforward creates an expectation which the actor anticipates. When expected experience occurs, this provides confirmatory feedback.

References

  1. "CDS Projects | Center on Disability Studies".
  2. Dowrick, P. W. (1976). Self modelling: A videotape training technique for disturbed and disabled children. Doctoral dissertation, University of Auckland, New Zealand.
  3. Dowrick, P. W. (1983). Self-modelling. In P. W. Dowrick & S. J. Biggs (Eds.), Using video: Psychological and social applications (pp. 105–124). Chichester, UK: Wiley.
  4. Dowrick, P. W. (1999). A review of self modeling and related interventions. Applied and Preventive Psychology, 8, 23-39.
  5. Bellini, S., Akullian, J., & Hopf, A. (2007). Increasing social engagement in young children with autism spectrum disorders using video self modeling. School Psychology Review, 36, 80-90.
  6. Buggey, T. (2005). Video self modeling applications with students with autism spectrum disorder in a small private school setting. Focus on Autism and Other Developmental Disabilities, 20, 52-63.
  7. Dowrick, P. W., Kim-Rupnow, W. S., & Power, T. J. (2006). Video feedforward for reading. Journal of Special Education, 39, 194-207.
  8. "Feedforward". 2009-06-28.
  9. Dowrick, P. W. (2011). Self model theory: Learning from the future. Article invited, WIREs for Cognitive Science.
  10. Suddendorf, T., & Corballis, M. C. (2007). "The evolution of foresight: What is mental time travel, and is it unique to humans?". Behavioral and Brain Sciences. 30 (3): 299–313. CiteSeerX   10.1.1.669.7126 . doi:10.1017/s0140525x07001975. PMID   17963565.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Addis, D. R., Wong, A. T., & Schacter, D. L. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologica, 45, 1363-1377.
  12. Basso, D. & Belardinelli, M. O. (2006). "The role of the feedforward paradigm in cognitive psychology". Cognitive Processing. 7 (2): 73–88. doi:10.1007/s10339-006-0034-1. PMID   16683170. S2CID   7735440.