Fibroin

Last updated
Fibroin light chain
Identifiers
SymbolL-Fibroin
Pfam PF05849
InterPro IPR008660
Fibroin heavy chain
Identifiers
Organism Bombyx mori
SymbolFIBH
PDB 3UA0
UniProt P05790
For a view of homologs, perform BLAST on the P05790[1-108] portion.
Fibroin P25 (Fibrohexamerin)
Identifiers
SymbolFibroin_P25
Pfam PF07294
InterPro IPR009911

Fibroin is an insoluble protein present in silk produced by numerous insects, such as the larvae of Bombyx mori , and other moth genera such as Antheraea , Cricula , Samia and Gonometa . Silk in its raw state consists of two main proteins, sericin and fibroin, with a glue-like layer of sericin coating two singular filaments of fibroin called brins. [1] [2] [3] Silk fibroin is considered a β-keratin related to proteins that form hair, skin, nails and connective tissues.

Primary structure of fibroin, (Gly-Ser-Gly-Ala-Gly-Ala)n Silk fibroin primary structure.svg
Primary structure of fibroin, (Gly-Ser-Gly-Ala-Gly-Ala)n

The silk worm produces fibroin with three chains, the light, heavy, and the glycoprotein P25. The heavy and light chains are linked by a disulphide bond, and P25 associates with disulphide-linked heavy and light chains by noncovalent interactions. P25 plays an important role in maintaining integrity of the complex. [4]

The heavy fibroin protein consists of layers of antiparallel beta sheets. Its primary structure mainly consists of the recurrent amino acid sequence (Gly-Ser-Gly-Ala-Gly-Ala)n. The high glycine (and, to a lesser extent, alanine) content allows for tight packing of the sheets, which contributes to silk's rigid structure and tensile strength. A combination of stiffness and toughness make it a material with applications in several areas, including biomedicine and textile manufacture.

Fibroin is known to arrange itself in three structures, called silk I, II, and III. Silk I is the natural form of fibroin, as emitted from the Bombyx mori silk glands. Silk II refers to the arrangement of fibroin molecules in spun silk, which has greater strength and is often used in various commercial applications. Silk III is a newly discovered structure of fibroin. [5] Silk III is formed principally in solutions of fibroin at an interface (i.e. air-water interface, water-oil interface, etc.).

Degradation

Many species of Amycolatopsis and Saccharotrix bacteria are able to degrade both silk fibroin and polylactic acid. [6]

Related Research Articles

<span class="mw-page-title-main">Antibody</span> Protein(s) forming a major part of an organisms immune system

An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the pathogen, called an antigen. Each tip of the "Y" of an antibody contains a paratope that is specific for one particular epitope on an antigen, allowing these two structures to bind together with precision. Using this binding mechanism, an antibody can tag a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly.

<span class="mw-page-title-main">Biopolymer</span> Polymer produced by a living organism

Biopolymers are natural polymers produced by the cells of living organisms. Biopolymers consist of monomeric units that are covalently bonded to form larger molecules. There are three main classes of biopolymers, classified according to the monomers used and the structure of the biopolymer formed: polynucleotides, polypeptides, and polysaccharides. Polynucleotides, such as RNA and DNA, are long polymers composed of 13 or more nucleotide monomers. Polypeptides and proteins, are polymers of amino acids and some major examples include collagen, actin, and fibrin. Polysaccharides are linear or branched polymeric carbohydrates and examples include starch, cellulose and alginate. Other examples of biopolymers include natural rubbers, suberin and lignin, cutin and cutan and melanin.

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Silk</span> Fine, lustrous, natural fiber produced by silk moth larvae

Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from the cocoons of the larvae of the mulberry silkworm Bombyx mori reared in captivity (sericulture). The shimmering appearance of silk is due to the triangular prism-like structure of the silk fibre, which allows silk cloth to refract incoming light at different angles, thus producing different colors.

<i>Bombyx mori</i> Moth mainly used in the production of silk

Bombyx mori, the domestic silk moth, is an insect from the moth family Bombycidae. It is the closest relative of Bombyx mandarina, the wild silk moth. The silkworm is the larva or caterpillar of a silk moth. It is an economically important insect, being a primary producer of silk. A silkworm's preferred food are white mulberry leaves, though they may eat other mulberry species and even the osage orange. Domestic silk moths are entirely dependent on humans for reproduction, as a result of millennia of selective breeding. Wild silk moths are not as commercially viable in the production of silk.

<span class="mw-page-title-main">Spider silk</span> Protein fiber made by spiders

Spider silk is a protein fibre spun by spiders. Spiders use their silk to make webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. They can also use their silk to suspend themselves, to float through the air, or to glide away from predators. Most spiders vary the thickness and stickiness of their silk for different uses.

<span class="mw-page-title-main">Active site</span> Active region of an enzyme

In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate and residues that catalyse a reaction of that substrate. Although the active site occupies only ~10–20% of the volume of an enzyme, it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes.

Gonadotropins are glycoprotein hormones secreted by gonadotropic cells of the anterior pituitary of vertebrates. This family includes the mammalian hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the placental/chorionic gonadotropins, human chorionic gonadotropin (hCG) and equine chorionic gonadotropin (eCG), as well as at least two forms of fish gonadotropins. These hormones are central to the complex endocrine system that regulates normal growth, sexual development, and reproductive function. LH and FSH are secreted by the anterior pituitary gland, while hCG and eCG are secreted by the placenta in pregnant humans and mares, respectively. The gonadotropins act on the gonads, controlling gamete and sex hormone production.

Beta-keratin (β-keratin), is a member of a structural protein family found in the epidermis of reptiles and birds. Beta-keratins were named so because they are components of epidermal stratum corneum rich in stacked beta sheets, in contrast to alpha-keratins, intermediate-filament proteins also found in stratum corneum and rich in alpha helices. Because the accurate use of the term keratin is limited to the alpha-keratins, the term "beta-keratins" in recent works is replaced by "corneous beta-proteins" or "keratin-associated beta-proteins."

<span class="mw-page-title-main">Bombykol</span> Chemical compound

Bombykol is a pheromone released by the female silkworm moth to attract mates. It is also the sex pheromone in the wild silk moth. Discovered by Adolf Butenandt in 1959, it was the first pheromone to be characterized chemically.

Kininogens are precursor proteins for kinins, biologically active polypeptides involved in blood coagulation, vasodilation, smooth muscle contraction, inflammatory regulation, and the regulation of the cardiovascular and renal systems.

<span class="mw-page-title-main">Agitoxin</span>

Agitoxin is a toxin found in the venom of the scorpion Leiurus quinquestriatus hebraeus. Other toxins found in this species include charybdotoxin (CTX). CTX is a close homologue of Agitoxin.

A nerve guidance conduit is an artificial means of guiding axonal regrowth to facilitate nerve regeneration and is one of several clinical treatments for nerve injuries. When direct suturing of the two stumps of a severed nerve cannot be accomplished without tension, the standard clinical treatment for peripheral nerve injuries is autologous nerve grafting. Due to the limited availability of donor tissue and functional recovery in autologous nerve grafting, neural tissue engineering research has focused on the development of bioartificial nerve guidance conduits as an alternative treatment, especially for large defects. Similar techniques are also being explored for nerve repair in the spinal cord but nerve regeneration in the central nervous system poses a greater challenge because its axons do not regenerate appreciably in their native environment.

<span class="mw-page-title-main">Wild silk</span>

Wild silks have been known and used in many countries from early times, although the scale of production is far smaller than that from cultivated silkworms. Silk cocoons and nests often resemble paper or cloth, and their use has arisen independently in many societies.

Sericin is a protein created by Bombyx mori (silkworms) in the production of silk. Silk is a fibre produced by the silkworm in production of its cocoon. It consists mainly of two proteins, fibroin and sericin. Silk consists of 70–80% fibroin and 20–30% sericin; fibroin being the structural center of the silk, and sericin being the gum coating the fibres and allowing them to stick to each other.

Demineralizing has the potential to be used in the silk sector enabling wet reeling of Wild Silk moth cocoons by removing the mineral layer present in these cocoons. This technique is not like degumming where the gum of the fibroin fibres is removed what would lead to a tangled cocoon. With "demineralizing" the gum and structure of the cocoon is kept intact enabling the cocoons to be wet reeled. This could allow a new silk industry in areas which have not the conditions or infrastructure for raising the domesticated silk worm Bombyx mori, possibly generating a revolutionary new income stream.

Silk amino acid (SAAs) also known as Sericin is a natural water-soluble glycoprotein extracted from raw silk. It is used as an additive in skin and hair care products due to its high levels of serine which has excellent moisture preservation characteristics. As a water-based additive it is used to provide a protective barrier and silky feel to lotions, soaps, personal lubricants, hair and skincare products. Silk amino acids are produced by hydrolyzing silk proteins into smaller peptide chains, typically 18 to 19 amino acids in length. Silk amino acids have a lower molecular weight than silk protein powders and are moisturizing to skin and hair.

An aquamelt is a naturally hydrated polymeric material that is able to solidify at environmental temperatures through a controlled stress input.

Caddisfly silk is silk that is secreted by the silk glands of the caddisfly (Trichoptera), similar to Lepidoptera silkworms. The larvae use silk to hunt and defend themselves. The silk's underwater binding properties are a subject of ongoing scientific research.

<span class="mw-page-title-main">Eosinophil peroxidase</span> Protein-coding gene in the species Homo sapiens

Eosinophil peroxidase is an enzyme found within the eosinophil granulocytes, innate immune cells of humans and mammals. This oxidoreductase protein is encoded by the gene EPX, expressed within these myeloid cells. EPO shares many similarities with its orthologous peroxidases, myeloperoxidase (MPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO). The protein is concentrated in secretory granules within eosinophils. Eosinophil peroxidase is a heme peroxidase, its activities including the oxidation of halide ions to bacteriocidal reactive oxygen species, the cationic disruption of bacterial cell walls, and the post-translational modification of protein amino acid residues.

References

  1. Hakimi O, Knight DP, Vollrath F, Vadgama P (April 2007). "Spider and mulberry silkworm silks as compatible biomaterials". Composites Part B: Engineering. 38 (3): 324–37. doi:10.1016/j.compositesb.2006.06.012.
  2. Dyakonov T, Yang CH, Bush D, Gosangari S, Majuru S, Fatmi A (2012). "Design and characterization of a silk-fibroin-based drug delivery platform using naproxen as a model drug". Journal of Drug Delivery. 2012: 490514. doi: 10.1155/2012/490514 . PMC   3312329 . PMID   22506122.
  3. "Brin definition and meaning | Collins English Dictionary". www.collinsdictionary.com.
  4. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (December 2000). "Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio". The Journal of Biological Chemistry. 275 (51): 40517–28. doi: 10.1074/jbc.M006897200 . PMID   10986287.
  5. Valluzzi R, Gido SP, Muller W, Kaplan DL (1999). "Orientation of silk III at the air-water interface". International Journal of Biological Macromolecules. 24 (2–3): 237–42. doi:10.1016/S0141-8130(99)00002-1. PMID   10342770.
  6. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (August 2009). "Biodegradability of plastics". International Journal of Molecular Sciences. 10 (9): 3722–42. doi: 10.3390/ijms10093722 . PMC   2769161 . PMID   19865515.
This article incorporates text from the public domain Pfam and InterPro: IPR009911