Induction of final maturation of oocytes is a procedure that is usually performed as part of controlled ovarian hyperstimulation to render the oocytes fully developed and thereby resulting in optimal pregnancy chances. It is basically a replacement for the luteinizing hormone (LH) surge whose effects include final maturation in natural menstrual cycles.
The main medications used for induction of final maturation are human chorionic gonadotropin (hCG) and GnRH agonist. In fresh (rather than frozen) autologous cycles of in vitro fertilization, final oocyte maturation triggering with GnRH agonist instead of hCG decreases the risk of ovarian hyperstimulation syndrome but decreases live birth rate. In cycles followed by oocyte donation, use of GnRH agonists instead of hCG decreases the risk of ovarian hyperstimulation syndrome with no evidence of a difference in live birth rate. [1]
Induction of final maturation also initiates the mechanisms that eventually result in ovulation, and thereby makes the oocytes destined to undergo ovulation unless artificial oocyte retrieval is performed first. Therefore, induction of final maturation is also called triggering oocyte release from the ovary, and the administration of pharmaceutical drugs to induce final maturation is colloquially called giving a "trigger shot", even if the plan is to perform artificial oocyte retrieval before ovulation. [2]
Administration of a drug to trigger oocyte release without oocyte retrieval results in a predictable time of ovulation, with the interval from drug administration to ovulation depending on the type of drug. This avails for sexual intercourse or intrauterine insemination (IUI) to conveniently be scheduled at ovulation, the most likely time to achieve pregnancy. [3]
In ovulation induction, using clomifene for intended conception by sexual intercourse, however, triggering oocyte release has been shown to decrease pregnancy chances compared to frequent monitoring with LH surge tests. [4] Therefore, in such cases, triggering oocyte release is best reserved for women who require IUI and in whom LH monitoring proves difficult or unreliable. [4] It may also be used when LH monitoring hasn't shown an LH surge by cycle day 18 (where cycle day 1 is the first day of the preceding menstruation) and there is an ovarian follicle of over 20 mm in size. [5]
In in vitro fertilization (IVF), induction of final maturation avails for egg retrieval when the eggs are fully mature.[ citation needed ]
In IVF, final maturation induction is preceded by controlled ovarian hyperstimulation. It is suggested that there should be a size of ovarian follicles of at least 15 mm, and serum estradiol level of 0.49 nmol/L before commencing final maturation induction. There are better prospects at a follicle size of 18 mm and serum estradiol level of 0.91 nmol/L. [6]
Medications used for final maturation and/or release of oocytes include:
Final maturation induction using GnRH agonist results in a substantial decrease in the risk of ovarian hyperstimulation syndrome (OHSS). A Cochrane review estimated that using GnRH agonist instead of hCG in IVF decreases the risk of mild, moderate or severe OHSS with an odds ratio of approximately 0.15. The review estimated that, for a woman with a 5% risk of mild, moderate or severe OHSS with the use of HCG, the risk of OHSS with the use of a GnRH agonist would be between 0 and 2%. [1]
However, using GnRH agonist has a lower live birth rate than when using hCG in autologous oocyte transfers (rather than ones using oocyte donation). A Cochrane review of autologous oocyte transfers estimated that GnRH agonist, compared to hCG, gives an odds ratio of pregnancy of approximately 0.47. It estimated that, for a woman with a 31% chance of achieving live birth with the use of hCG, the chance of a live birth with the use of an GnRH agonist would be between 12% and 24%. [1] Likewise, using GnRH agonist instead of hCG was associated with a lower ongoing pregnancy rate (pregnancy beyond 12 weeks) than was seen with HCG (odds ratio 0.70) and a higher rate of early (less than 12 weeks) miscarriage (odds ratio 1.74). However, a higher pregnancy rate when using hCG is only found in those receiving luteal support without luteinizing hormone activity (such as progesterone or progestin). [1]
Final maturation induction using a GnRH agonist is recommended in women with cancer undergoing fertility preservation, because ovarian hyperstimulation syndrome is associated with an increased risk of arterial thrombotic events such as stroke, myocardial infarction and peripheral arterial embolism, and this risk can add to an already increased risk caused by the cancer. [11]
Using hCG versus GnRH agonist has no effect on the risk of multiple pregnancy. [1] Also, no difference has been found between the regimens regarding live birth rate or ongoing pregnancy rate when the controlled ovarian hyperstimulation was followed by oocyte donation. [1]
In vitro fertilisation (IVF) is a process of fertilisation where an egg is combined with sperm in vitro. The process involves monitoring and stimulating an individual's ovulatory process, removing an ovum or ova from their ovaries and letting sperm fertilise them in a culture medium in a laboratory. After the fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.
Ovulation is the release of eggs from the ovaries. In women, this event occurs when the ovarian follicles rupture and release the secondary oocyte ovarian cells. After ovulation, during the luteal phase, the egg will be available to be fertilized by sperm. In addition, the uterine lining (endometrium) is thickened to be able to receive a fertilized egg. If no conception occurs, the uterine lining as well as the egg will be shed during menstruation.
Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).
Anovulation is when the ovaries do not release an oocyte during a menstrual cycle. Therefore, ovulation does not take place. However, a woman who does not ovulate at each menstrual cycle is not necessarily going through menopause. Chronic anovulation is a common cause of infertility.
Ovarian hyperstimulation syndrome (OHSS) is a medical condition that can occur in some women who take fertility medication to stimulate egg growth, and in other women in very rare cases. Most cases are mild, but rarely the condition is severe and can lead to serious illness or death.
Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.
A gonadotropin-releasing hormone agonist is a type of medication which affects gonadotropins and sex hormones. They are used for a variety of indications including in fertility medicine and to lower sex hormone levels in the treatment of hormone-sensitive cancers such as prostate cancer and breast cancer, certain gynecological disorders like heavy periods and endometriosis, high testosterone levels in women, early puberty in children, as a part of transgender hormone therapy, and to delay puberty in transgender youth among other uses. GnRH agonists are given by injections into fat, as implants placed into fat, and as nasal sprays.
Gonadotropin-releasing hormone antagonists are a class of medications that antagonize the gonadotropin-releasing hormone receptor and thus the action of gonadotropin-releasing hormone (GnRH). They are used in the treatment of prostate cancer, endometriosis, uterine fibroids, female infertility in assisted reproduction, and for other indications.
Ovulation induction is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the development of ovarian follicles to reverse anovulation or oligoovulation.
Ganirelix acetate, sold under the brand names Orgalutran and Antagon among others, is an injectable competitive gonadotropin-releasing hormone antagonist. It is primarily used in assisted reproduction to control ovulation. The drug works by blocking the action of GnRH upon the pituitary, thus rapidly suppressing the production and action of LH and FSH. Ganirelix is used in fertility treatment to prevent premature ovulation that could result in the harvesting of eggs that are too immature to be used in procedures such as in vitro fertilization.
Human oocyte cryopreservation is a procedure to preserve a woman's eggs (oocytes). This technique has been used to enable women to postpone pregnancy to a later date – whether for medical reasons, or for social reasons. Several studies have shown that most infertility problems are due to germ cell deterioration related to aging. The intention of the procedure is that the woman may choose to have the eggs thawed, fertilized, and transferred to the uterus as embryos to facilitate a pregnancy in the future. The procedure's success rate varies depending on the age of the woman, with odds being higher in younger, adult women.
Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval for use in in vitro fertilisation (IVF), or be given time to ovulate, resulting in superovulation which is the ovulation of a larger-than-normal number of eggs, generally in the sense of at least two. When ovulated follicles are fertilised in vivo, whether by natural or artificial insemination, there is a very high risk of a multiple pregnancy.
In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.
Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure may represent a continuum of premature ovarian senescence. It is usually accompanied by high FSH levels.
Transvaginal oocyte retrieval (TVOR), also referred to as oocyte retrieval (OCR), is a technique used in in vitro fertilization (IVF) in order to remove oocytes from the ovary of a woman, enabling fertilization outside the body. Transvaginal oocyte retrieval is more properly referred to as transvaginal ovum retrieval when the oocytes have matured into ova, as is normally the case in IVF. It can be also performed for egg donation, oocyte cryopreservation and other assisted reproduction technology such as ICSI.
Fertility preservation is the effort to help cancer patients retain their fertility, or ability to procreate. Research into how cancer, ageing and other health conditions effect reproductive health and preservation options are growing. Specifically sparked in part by the increase in the survival rate of cancer patients.
Natural Cycle IVF is in vitro fertilisation (IVF) using either of the following procedures:
Infertility in polycystic ovary disease (PCOS) is a hormonal imbalance in women that is thought to be one of the leading causes of female infertility. Polycystic ovary syndrome causes more than 75% of cases of anovulatory infertility.
Luteal support is the administration of medication, generally progesterone, progestins, hCG or GnRH agonists, to increase the success rate of implantation and early embryogenesis, thereby complementing and/or supporting the function of the corpus luteum. It can be combined with for example in vitro fertilization and ovulation induction.
Gonadotropin surge-attenuating factor (GnSAF) is a nonsteroidal ovarian hormone produced by the granulosa cells of small antral ovarian follicles in females. GnSAF is involved in regulating the secretion of luteinizing hormone (LH) from the anterior pituitary and the ovarian cycle. During the early to mid-follicular phase of the ovarian cycle, GnSAF acts on the anterior pituitary to attenuate LH release, limiting the secretion of LH to only basal levels. At the transition between follicular and luteal phase, GnSAF bioactivity declines sufficiently to permit LH secretion above basal levels, resulting in the mid-cycle LH surge that initiates ovulation. In normally ovulating women, the LH surge only occurs when the oocyte is mature and ready for extrusion. GnSAF bioactivity is responsible for the synchronised, biphasic nature of LH secretion.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)