Ovulation induction | |
---|---|
Specialty | reproductive endocrinology and infertility , obstetrics |
MeSH | D010062 |
Ovulation induction is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the development of ovarian follicles [1] [2] [3] to reverse anovulation or oligoovulation.
The term ovulation induction can potentially also be used for:
However, this article focuses on medical ovarian stimulation, during early to mid-follicular phase, without subsequent in vitro fertilization, with the aim of developing one or two ovulatory follicles (the maximum number before recommending sexual abstinence). [8]
Ovulation induction helps reversing anovulation or oligoovulation, that is, helping women who do not ovulate on their own regularly, [2] such as those with polycystic ovary syndrome (PCOS). [1]
The main alternatives for ovulation induction medications are:
Clomifene citrate (Clomid is a common brand name) is the medication which is most commonly used to treat anovulation. It is a selective estrogen-receptor modulator, affecting the hypothalamic–pituitary–gonadal axis to respond as if there was an estrogen deficit in the body, in effect increasing the production of follicle-stimulating hormone. It is relatively easy and convenient to use. [10] Clomifene appears to inhibit estrogen receptors in hypothalamus, thereby inhibiting negative feedback of estrogen on production of follicle-stimulating hormone. [11] It may also result in direct stimulation of the hypothalamic–pituitary axis. [11] It also has an effect on cervical mucus quality and uterine mucosa, which might affect sperm penetration and survival, hence its early administration during the menstrual cycle. Clomifene citrate is a very efficient ovulation inductor, and has a success rate of 67%. Nevertheless, it only has a 37% success rate in inducing pregnancy. This difference may be due to the anti-estrogenic effect which clomifene citrate has on the endometrium, cervical mucus, uterine blood flow, as well as the resulting decrease in the motility of the fallopian tubes and the maturation of the oocytes. [12]
Letrozole has been used for ovarian stimulation by fertility doctors since 2001 because it has fewer side-effects than clomiphene and less chance of multiple gestation.[ citation needed ] A study of 150 babies following treatment with letrozole or letrozole and follicle-stimulating hormone presented at the American Society of Reproductive Medicine 2005 Conference found no difference in overall abnormalities but did find a significantly higher rate of locomotor and cardiac abnormalities among the group having taken letrozole compared to natural conception. [13] A larger, follow-up study with 911 babies compared those born following treatment with letrozole to those born following treatment with clomiphene. [14] That study also found no significant difference in the rate of overall abnormalities, but found that congenital cardiac anomalies was significantly higher in the clomiphene group compared to the letrozole group.
Dosage is generally 2.5 to 7.5 mg daily over 5 days. A higher dose of up to 12.5 mg per day results in increased follicular growth and a higher number of predicted ovulations, without a detrimental effect on endometrial thickness, and is considered in those who do not respond adequately to a lower dose. [15]
Tamoxifen affects estrogen receptors in a similar fashion as clomifene citrate. It is often used in the prevention and treatment of breast cancer. It can therefore also be used to treat patients that have a reaction to clomifene citrate. [16]
Preparations of follicle-stimulating hormone mainly include those derived from the urine of menopausal women, as well as recombinant preparations. The recombinant preparations are more pure and more easily administered, but they are more expensive. The urinary preparations are equally effective and less expensive, but are not as convenient to administer as they are available in vials versus injection pens.
The gonadotropin-releasing hormone pump is used to release doses in a pulsatile fashion. This hormone is synthesised by the hypothalamus and induces the secretion of follicle-stimulating hormone by the pituitary gland. Gonadotropin-releasing hormone must be delivered in a pulsatile fashion to imitate the random secretion of the hypothalamus in order to stimulate the pituitary into secreting luteinizing hormone and follicle-stimulating hormone. The gonadotropin-releasing hormone pump is the size of a cigarette box and has a small catheter. Unlike other treatments, using the gonadotropin-releasing hormone pump usually does not result in multiple pregnancies. Filicori from the University of Bologna suggests that this might be because gonadotrophins are absent when the treatment is initiated, and therefore the hormones released by the pituitary (luteinizing hormone and follicle-stimulating hormone) can still take part in the retro-control of gonadotrophin secretion, mimicking the natural cycle. [17] This treatment can also be used for underweight and/or anorexic patients; [18] it has also been used in certain cases of hyperprolactimenia.
In the Nordic countries, letrozole is practically the standard initial regimen used for ovulation induction, since no formulation of clomifene is registered for use there. [19] [20]
India banned the usage of letrozole in 2011, citing potential risks to infants. [21] In 2012, an Indian parliamentary committee said that the drug controller office colluded with letrozole's makers to approve the drug for infertility in India. [22]
Although there are many possible additional diagnostic and interventional techniques, protocols for ovulation induction generally consist of:
During ovulation induction, it is recommended to start at a low dose and monitor the ovarian response with transvaginal ultrasound, including discernment of the number of developing follicles. Initial exam is most commonly started 4–6 days after last pill. Serial transvaginal ultrasound can reveal the size and number of developing follicles. It can also provide presumptive evidence of ovulation such as sudden collapse of the preovulatory follicle, and an increase in fluid volume in the rectouterine pouch. After ovulation, it may reveal signs of luteinization such as loss of clearly defined follicular margins and appearance of internal echoes.
A cycle with supernumerary follicles is usually defined as one where there are more than two follicles >16 mm in diameter. [26] It is generally recommended to have such cycles cancelled because of the risk of multiple pregnancy (see also the "Risks and side effects" section below). [26] [8] In cancelled cycles, the woman or couple should be warned of the risks in case of supernumerary follicles, and should avoid sexual intercourse or use contraception until the next menstruation. [26] Induction of final maturation (such as done with hCG) may need to be withheld because of increased risk of ovarian hyperstimulation syndrome. [26] The starting dose of the inducing drug should be reduced in the next cycle. [26]
Alternatives to cancelling a cycle are mainly:
The following laboratory tests may be used to monitor induced cycles: [28]
Final maturation induction and release, such as by human chorionic gonadotropin (HCG or hCG) or recombinant luteinizing hormone, results in a predictable time of ovulation, with the interval from drug administration to ovulation depending on the type of drug. This avails for sexual intercourse or intrauterine insemination to conveniently be scheduled at ovulation, the most likely time to achieve pregnancy. [4]
As evidenced by clomifene-induced cycles, however, triggering oocyte release has been shown to decrease pregnancy chances compared to frequent monitoring with LH surge tests. [28] Therefore, in such cases, triggering oocyte release is best reserved for women who require intrauterine insemination and in whom luteinizing hormone monitoring proves difficult or unreliable. [28] It may also be used when luteinizing hormone monitoring has no shown an luteinizing hormone surge by cycle day 18 (where cycle day 1 is the first day of the preceding menstruation) and there is an ovarian follicle of over 20 mm in size. [29]
Ovulation induction can be repeated every menstrual cycle. For clomifene, the dosage may be increased by 50-mg increments in subsequent cycles until ovulation is achieved. [28] [30] However, at a dosage of 200 mg, further increments are unlikely to increase pregnancy chances. [28]
It is not recommended by the manufacturer of clomifene to use it for more than 6 consecutive cycles. [31] [32] In women with anovulation, 7–12 attempted cycles of pituitary feedback regimens (as evidenced by clomifene citrate) are recommended before switching to gonadotrophins, since the latter ones are more expensive and less easy to control. [9]
It is no longer recommended to perform an ultrasound examination to exclude any significant residual ovarian enlargement before each new treatment cycle. [28]
Ultrasound and regular hormone checks mitigate risks throughout the process. However, there are still some risks with the procedure.
Ovarian hyperstimulation syndrome occurs in 5–10% of cases. [33] Symptoms depend on whether the case is mild, moderate, or severe, and can range from bloating and nausea, through to shortness of breathe, pleural effusion, and excessive weight gain (more than 2 pounds per day).
There is also the risk that more than one egg is produced, leading to twins or triplets. Women with polycystic ovary syndrome may be particularly at risk. Multiple pregnancy occurs in approximately 15–20% of cases following cycles induced with gonadotrophins such as human menopausal gonadotropin and follicle-stimulating hormone. [26] The risks associated with multiple pregnancy are much higher than singleton pregnancy; incidence of perinatal death is seven times higher in triplet births and five times higher in twin births than the risks associated with a singleton pregnancy. [34] [35] It is therefore important to adapt the treatment to each individual patient. [36] If more than one or two ovulatory follicles are detected on ultrasonography, sexual abstinence is recommended. [8]
Other treatments for anovulation are mainly:
Ovulation is the release of egg cells from the ovaries as part of the ovarian cycle for most vertebrates. In women, this event occurs at the end of the follicular phase, when the ovarian follicles rupture and release the secondary oocyte ovarian cells.
Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).
Follicle-stimulating hormone (FSH) is a gonadotropin, a glycoprotein polypeptide hormone. FSH is synthesized and secreted by the gonadotropic cells of the anterior pituitary gland and regulates the development, growth, pubertal maturation, and reproductive processes of the body. FSH and luteinizing hormone (LH) work together in the reproductive system.
Anovulation is when the ovaries do not release an oocyte during a menstrual cycle. Therefore, ovulation does not take place. However, a woman who does not ovulate at each menstrual cycle is not necessarily going through menopause. Chronic anovulation is a common cause of infertility.
Clomifene, also known as clomiphene, is a medication used to treat infertility in women who do not ovulate, including those with polycystic ovary syndrome. It is taken by mouth.
Ovarian hyperstimulation syndrome (OHSS) is a medical condition that can occur in some women who take fertility medication to stimulate egg growth, and in other women in sporadic cases. Most cases are mild, but rarely the condition is severe and can lead to serious illness or even death.
Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.
The hypothalamic–pituitary–gonadal axis refers to the hypothalamus, pituitary gland, and gonadal glands as if these individual endocrine glands were a single entity. Because these glands often act in concert, physiologists and endocrinologists find it convenient and descriptive to speak of them as a single system.
The menstrual cycle is on average 28 days in length. It begins with menses during the follicular phase, followed by ovulation and ending with the luteal phase. Unlike the follicular phase which can vary in length among individuals, the luteal phase is typically fixed at approximately 14 days and is characterized by changes to hormone levels, such as an increase in progesterone and estrogen levels, decrease in gonadotropins such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), changes to the endometrial lining to promote implantation of the fertilized egg, and development of the corpus luteum. In the absence of fertilization by sperm, the corpus luteum degenerates leading to a decrease in progesterone and estrogen, an increase in FSH and LH, and shedding of the endometrial lining (menses) to begin the menstrual cycle again.
A gonadotropin-releasing hormone agonist is a type of medication which affects gonadotropins and sex hormones. They are used for a variety of indications including in fertility medicine and to lower sex hormone levels in the treatment of hormone-sensitive cancers such as prostate cancer and breast cancer, certain gynecological disorders like heavy periods and endometriosis, high testosterone levels in women, early puberty in children, as a part of transgender hormone therapy, and to delay puberty in transgender youth among other uses. It is also used in the suppression of spontaneous ovulation as part of controlled ovarian hyperstimulation, an essential component in IVF. GnRH agonists are given by injections into fat, as implants placed into fat, and as nasal sprays.
Gonadotropin-releasing hormone antagonists are a class of medications that antagonize the gonadotropin-releasing hormone receptor and thus the action of gonadotropin-releasing hormone (GnRH). They are used in the treatment of prostate cancer, endometriosis, uterine fibroids, female infertility in assisted reproduction, and for other indications.
Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval for use in in vitro fertilisation (IVF), or be given time to ovulate, resulting in superovulation which is the ovulation of a larger-than-normal number of eggs, generally in the sense of at least two. When ovulated follicles are fertilised in vivo, whether by natural or artificial insemination, there is a very high risk of a multiple pregnancy.
Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure may represent a continuum of premature ovarian senescence. It is usually accompanied by high FSH levels.
Enclomifene (INNTooltip International Nonproprietary Name), or enclomiphene (USANTooltip United States Adopted Name), a nonsteroidal selective estrogen receptor modulator of the triphenylethylene group, acts by antagonizing the estrogen receptor (ER) in the pituitary gland, which reduces negative feedback by estrogen on the hypothalamic-pituitary-gonadal axis, thereby increasing gonadotropin secretion and hence gonadal production of testosterone. It is one of the two stereoisomers of clomifene, which itself is a mixture of 38% zuclomifene and 62% enclomifene. Enclomifene is the (E)-stereoisomer of clomifene, while zuclomifene is the (Z)-stereoisomer. Whereas zuclomifene is more estrogenic, enclomifene is more antiestrogenic. In accordance, unlike enclomifene, zuclomifene is antigonadotropic due to activation of the ER and reduces testosterone levels in men. As such, isomerically pure enclomifene is more favorable than clomifene as a progonadotropin for the treatment of male hypogonadism.
Ovarian drilling, also known as multiperforation or laparoscopic ovarian diathermy, is a surgical technique of puncturing the membranes surrounding the ovary with a laser beam or a surgical needle using minimally invasive laparoscopic procedures. It differs from ovarian wedge resection, which involves the cutting of tissue. Minimally invasive ovarian drilling procedures have replaced wedge resections. Ovarian drilling is favored over wedge resection because cutting into the ovary might result in adhesions, potentially complicating postoperative outcomes. Ovarian drilling and ovarian wedge resection are treatment options to reduce the amount of androgen producing tissue in women with polycystic ovarian syndrome (PCOS). PCOS is the primary cause of anovulation, which results in female infertility. The induction of mono-ovulatory cycles can restore fertility.
Fertility testing is the process by which fertility is assessed, both generally and also to find the "fertile window" in the menstrual cycle. General health affects fertility, and STI testing is an important related field.
Infertility in polycystic ovary disease (PCOS) is a hormonal imbalance in women that is thought to be one of the leading causes of female infertility. Polycystic ovary syndrome causes more than 75% of cases of anovulatory infertility.
Induction of final maturation of oocytes is a procedure that is usually performed as part of controlled ovarian hyperstimulation to render the oocytes fully developed and thereby resulting in optimal pregnancy chances. It is basically a replacement for the luteinizing hormone (LH) surge whose effects include final maturation in natural menstrual cycles.
Gonadotropin surge-attenuating factor (GnSAF) is a nonsteroidal ovarian hormone produced by the granulosa cells of small antral ovarian follicles in females. GnSAF is involved in regulating the secretion of luteinizing hormone (LH) from the anterior pituitary and the ovarian cycle. During the early to mid-follicular phase of the ovarian cycle, GnSAF acts on the anterior pituitary to attenuate LH release, limiting the secretion of LH to only basal levels. At the transition between follicular and luteal phase, GnSAF bioactivity declines sufficiently to permit LH secretion above basal levels, resulting in the mid-cycle LH surge that initiates ovulation. In normally ovulating women, the LH surge only occurs when the oocyte is mature and ready for extrusion. GnSAF bioactivity is responsible for the synchronised, biphasic nature of LH secretion.
Female fertility agents are medications that improve female’s ability to conceive pregnancy. These agents are prescribed for infertile female who fails to conceive pregnancy after 1-year of regular and unprotected sexual intercourse. The following will cover the advancements of female fertility agents, major causes of female infertility. Next, it emphasizes on common female fertility agents in terms of their mechanism of action, side effects, fetal consideration and clinical application and ended up by the introduction of supplements and herbal medicines for female infertility.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)