Transvaginal oocyte retrieval

Last updated

Transvaginal oocyte retrieval (TVOR), also referred to as oocyte retrieval (OCR), is a technique used in in vitro fertilization (IVF) in order to remove oocytes from an ovary, enabling fertilization outside the body. [1] Transvaginal oocyte retrieval is more properly referred to as transvaginal ovum retrieval when the oocytes have matured into ova, as is normally the case in IVF. It can be also performed for egg donation, oocyte cryopreservation and other assisted reproduction technology such as ICSI.

Contents

Procedure

Under ultrasound guidance, the operator inserts a 16.5 gauge × 11.8″ (1.6 mm × 300 mm outer diameter) needle through the vaginal wall and into an ovarian follicle, taking care not to injure nearby organs and blood vessels. The other end of the needle is attached to a suction device. Once the follicle is entered, suction is carefully applied to aspirate follicular fluid containing cellular material, including the oocyte. The suction device must maintain a pressure of -140 mmHg (necessary to aspirate rapidly, but not enough to damage the follicles) and a temperature of approximately 37 °C. The follicular fluid is delivered to a technician in the IVF laboratory to identify and quantify the ova. Once the ovarian follicles have been aspirated on one ovary, the needle is withdrawn and the procedure is repeated on the other ovary. It is not unusual to remove 20 oocytes as patients are generally hyperstimulated in advance of this procedure. After completion, the needle is withdrawn, and hemostasis is achieved. The procedure usually lasts 1020 minutes. Once the extraction is done, the sample is analyzed in the microscope to select and carry out the oocyte decumulation, a process where the granulosa cells surrounding the oocyte are removed.

Initially performed using transabdominal ultrasonography, TVOR is currently performed with a transvaginal ultrasound transducer with an attached needle. [2] TVOR is performed in an operating room or a physician's office, with the (female) subject in the lithotomy position. TVOR is usually performed under procedural sedation, [3] general anesthesia, [4] paracervical block, [5] or sometimes spinal anesthesia. [6] Local anesthesia is not typically used because local anesthetic agents interfere with follicular cleavage and the technique requires multiple needle punctures. [7]

This technique must be done very delicately, without stimulating the uterus, so that contractions do not occur. Minimizing patient anxiety is desirable to favor efficacy.

Adjunctive procedures

Follicular flushing has not been found to increase pregnancy rates, nor result in an increase in oocyte yield. On the other hand, it requires a significantly longer operative time and more analgesia. [8]

Seminal fluid contains several proteins that interact with epithelial cells of the cervix and uterus, inducing active gestational immune tolerance. There are significantly improved outcomes when patients are exposed to seminal plasma around the time of oocyte retrieval, with statistical significance for clinical pregnancy, but not for ongoing pregnancy or live birth rates with the limited data available. [9]

Timing

TVOR is typically performed after ovarian hyperstimulation, where oocytes are pharmacologically stimulated to mature. When the ovarian follicles have reached a certain degree of development, induction of final oocyte maturation is performed, generally by an intramuscular or subcutaneous injection of human chorionic gonadotropin (hCG). [10] TVOR is typically performed 3436 hours after hCG injection, when the eggs are fully mature but just prior to rupture of the follicles. [10] [11]

Complications

Injection of hCG as a trigger for ovulation confers a risk of ovarian hyperstimulation syndrome, especially in patients with polycystic ovary syndrome who have been hyperstimulated during previous assisted reproduction cycles. [12]

Complications of TVOR include injury to pelvic organs, hemorrhage, and infection. Occurring more often in lean patients with polycystic ovary syndrome, ovarian hemorrhage after TVOR is a potentially catastrophic and not so rare complication. [13] Additional complications may result from the administration of intravenous sedation or general anesthesia. These include asphyxia caused by airway obstruction, apnea, hypotension, and pulmonary aspiration of stomach contents.

Propofol-based anesthetic techniques result in significant concentrations of propofol in follicular fluid. As propofol has been shown to have deleterious effects on oocyte fertilization (in a mouse model), some authors have suggested that the dose of propofol administered during anesthesia should be limited, and also that the retrieved oocytes should be washed free of propofol. [14] Anecdotal evidence suggests that certain airborne chemical contaminants and particles, especially volatile organic compounds (VOC), may be toxic to and impair the growth and development of embryos if present in sufficient concentrations in the ambient atmosphere of an IVF incubator. [15] [16]

Endometriosis seems to cause a challenge for TVOR that may have reflection on individual surgeon's performance rates for the procedure, independently from the diameter of a pre-existing ovarian endometrioma (OMA) or ovarian adhesions. Obesity is another factor that may present a challenge for the procedure. [17]

History

This technique was first developed by Pierre Dellenbach and colleagues in Strasbourg, France, and reported in 1984. [18] Steptoe and Edwards used laparoscopy to recover oocytes when IVF was introduced, and laparoscopy was the major method of oocyte recovery until TVOR was introduced.

Related Research Articles

<span class="mw-page-title-main">In vitro fertilisation</span> Assisted reproductive technology procedure

In vitro fertilisation (IVF) is a process of fertilisation where an egg is combined with sperm in vitro. The process involves monitoring and stimulating a woman's ovulatory process, removing an ovum or ova from their ovaries and letting a man's sperm fertilise them in a culture medium in a laboratory. After the fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.

<span class="mw-page-title-main">Ovulation</span> Release of egg cells from the ovaries

Ovulation is the release of eggs from the ovaries. In women, this event occurs when the ovarian follicles rupture and release the secondary oocyte ovarian cells. After ovulation, during the luteal phase, the egg will be available to be fertilized by sperm. In addition, the uterine lining (endometrium) is thickened to be able to receive a fertilized egg. If no conception occurs, the uterine lining as well as the egg will be shed during menstruation.

<span class="mw-page-title-main">Oogenesis</span> Egg cell production process

Oogenesis, ovogenesis, or oögenesis is the differentiation of the ovum into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.

Ovarian hyperstimulation syndrome (OHSS) is a medical condition that can occur in some women who take fertility medication to stimulate egg growth, and in other women in very rare cases. Most cases are mild, but rarely the condition is severe and can lead to serious illness or death.

<span class="mw-page-title-main">Anti-Müllerian hormone</span> Mammalian protein found in humans

Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting hormone (MIH), is a glycoprotein hormone structurally related to inhibin and activin from the transforming growth factor beta superfamily, whose key roles are in growth differentiation and folliculogenesis. In humans, it is encoded by the AMH gene, on chromosome 19p13.3, while its receptor is encoded by the AMHR2 gene on chromosome 12.

<span class="mw-page-title-main">Ovarian reserve</span>

Ovarian reserve is a term that is used to determine the capacity of the ovary to provide egg cells that are capable of fertilization resulting in a healthy and successful pregnancy. With advanced maternal age the number of egg cell that can be successfully recruited for a possible pregnancy declines, constituting a major factor in the inverse correlation between age and female fertility.

Ovulation induction is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the development of ovarian follicles to reverse anovulation or oligoovulation.

<span class="mw-page-title-main">Oocyte cryopreservation</span> Procedure to preserve a womans eggs (oocytes)

Oocyte cryopreservation is a procedure to preserve a woman's eggs (oocytes). This technique has been used to postpone pregnancy. When pregnancy is desired, the eggs can be thawed, fertilized, and transferred to the uterus as embryos. Several studies have shown that most infertility problems are due to germ cell deterioration related to aging. The procedure's success rate varies depending on the age of the woman, with the odds being higher in younger, adult women.

<span class="mw-page-title-main">Antral follicle</span>

An antral or secondary follicle, also known as Graafian follicle and tertiary follicle, is an ovarian follicle during a certain latter stage of folliculogenesis.

Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval for use in in vitro fertilisation (IVF), or be given time to ovulate, resulting in superovulation which is the ovulation of a larger-than-normal number of eggs, generally in the sense of at least two. When ovulated follicles are fertilised in vivo, whether by natural or artificial insemination, there is a very high risk of a multiple pregnancy.

<span class="mw-page-title-main">In vitro maturation</span> Artificial maturation of harvested immature egg cells

In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.

Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure may represent a continuum of premature ovarian senescence. It is usually accompanied by high FSH levels.

Fertility preservation is the effort to help cancer patients retain their fertility, or ability to procreate. Research into how cancer, ageing and other health conditions effect reproductive health and preservation options are growing. Specifically sparked in part by the increase in the survival rate of cancer patients.

The Genetics & IVF Institute (GIVF) is an international provider of infertility and genetics services and products, and also engages in biomedical research in these fields. The Institute was founded in 1984 by Dr. Joseph D. Schulman and associates. GIVF headquarters are in Fairfax, VA, US, and its facilities include locations in Pennsylvania, Minnesota, California, and Texas in the United States, as well as in China, Mexico, and several other countries.

Ovarian drilling, also known as multiperforation or laparoscopic ovarian diathermy, is a surgical technique of puncturing the membranes surrounding the ovary with a laser beam or a surgical needle using minimally invasive laparoscopic procedures. It differs from ovarian wedge resection, which involves the cutting of tissue. Minimally invasive ovarian drilling procedures have replaced wedge resections. Ovarian drilling is preferred to wedge resection because cutting into the ovary can cause adhesions which may complicate postoperative outcomes. Ovarian drilling and ovarian wedge resection are treatment options to reduce the amount of androgen producing tissue in women with polycystic ovarian syndrome (PCOS). PCOS is the primary cause of anovulation, which results in female infertility. The induction of mono-ovulatory cycles can restore fertility.

<span class="mw-page-title-main">Fertility testing</span>

Fertility testing is the process by which fertility is assessed, both generally and also to find the "fertile window" in the menstrual cycle. General health affects fertility, and STI testing is an important related field.

Induction of final maturation of oocytes is a procedure that is usually performed as part of controlled ovarian hyperstimulation to render the oocytes fully developed and thereby resulting in optimal pregnancy chances. It is basically a replacement for the luteinizing hormone (LH) surge whose effects include final maturation in natural menstrual cycles.

Gonadotropin surge-attenuating factor (GnSAF) is a nonsteroidal ovarian hormone produced by the granulosa cells of small antral ovarian follicles in females. GnSAF is involved in regulating the secretion of luteinizing hormone (LH) from the anterior pituitary and the ovarian cycle. During the early to mid-follicular phase of the ovarian cycle, GnSAF acts on the anterior pituitary to attenuate LH release, limiting the secretion of LH to only basal levels. At the transition between follicular and luteal phase, GnSAF bioactivity declines sufficiently to permit LH secretion above basal levels, resulting in the mid-cycle LH surge that initiates ovulation. In normally ovulating women, the LH surge only occurs when the oocyte is mature and ready for extrusion. GnSAF bioactivity is responsible for the synchronised, biphasic nature of LH secretion.

Ovarian follicle dominance is the process where one or more follicles are selected per cycle to ovulate.

Ovarian culture is an in-vitro process that allows for the investigation of the development, toxicology and pathology of the ovary. This technique can also be used to study possible applications of fertility treatments e.g. isolating oocytes from primordial ovarian follicles that could be used for fertilisation.

References

  1. "Performing ultrasound-guided oocyte retrieval: RCN guidance for fertility nurses" (PDF). London: Royal College of Nursing. 2004. Archived from the original (PDF) on September 24, 2006. Retrieved 2011-08-01.
  2. Killick, S (2006). "Ultrasound and fertility". In Bates, J (ed.). Practical gynaecological ultrasound (2nd ed.). Cambridge, England: Cambridge University Press. pp. 120–5. ISBN   9780521674508.
  3. Yasmin E, Dresner M, Balen A (December 2004). "Sedation and anaesthesia for transvaginal oocyte collection: an evaluation of practice in the UK" (PDF). Human Reproduction. 19 (12): 2942–5. doi:10.1093/humrep/deh526. PMID   15388681.
  4. Sequeira PM (2011). "Anesthesia for in vitro fertilization". In Urman RD, Gross WL, Philip BK (eds.). Anesthesia outside of the operating room (1st ed.). Oxford, England: Oxford University Press. pp. 198–205. ISBN   9780195396676.
  5. Bumen S, Gunusen I, Firat V, Karaman S, Akdogan A, Tavmergen Goker EN (2011). "A comparison of intravenous general anesthesia and paracervical block for in vitro fertilization: effects on oocytes using the transvaginal technique". Turkish Journal of Medical Sciences. 41 (5): 801–8. doi: 10.3906/sag-1009-1101 .
  6. Viscomi CM, Hill K, Johnson J, Sites C (January 1997). "Spinal anesthesia versus intravenous sedation for transvaginal oocyte retrieval: reproductive outcome, side-effects and recovery profiles". International Journal of Obstetric Anesthesia. 6 (1): 49–51. doi:10.1016/S0959-289X(97)80052-0. PMID   15321311.
  7. Saxena R, Sood J, Kumra VP (2005). "Comparison of various sedation techniques for transvaginal oocyte retrieval in a daycare set up" (PDF). Indian Journal of Anaesthesia. 49 (2): 16–21.
  8. Farquhar, Cindy; Marjoribanks, Jane (2018-08-17). Cochrane Gynaecology and Fertility Group (ed.). "Assisted reproductive technology: an overview of Cochrane Reviews". Cochrane Database of Systematic Reviews. 2018 (8): CD010537. doi:10.1002/14651858.CD010537.pub5. PMC   6953328 . PMID   30117155.
  9. Crawford, G.; Ray, A.; Gudi, A.; Shah, A.; Homburg, R. (Mar–Apr 2015). "The role of seminal plasma for improved outcomes during in vitro fertilization treatment: review of the literature and meta-analysis". Human Reproduction Update. 21 (2): 275–284. doi: 10.1093/humupd/dmu052 . ISSN   1355-4786. PMID   25281684.
  10. 1 2 Stelling JR, Chapman ET, Frankfurter D, Harris DH, Oskowitz SP, Reindollar RH (2003). "Subcutaneous versus intramuscular administration of humanchorionicgonadotropin during an in vitro fertilization cycle". Fertility and Sterility. 79 (4): 881–5. doi: 10.1016/S0015-0282(02)04918-X . PMID   12749424.
  11. Kovacs, P (2004). "HCG injection after ovulation induction with clomiphene citrate". Medscape. Retrieved 2011-08-01.
  12. Oyawoye OA, Chander B, Hunter J, Gadir AA (2005). "Prevention of Ovarian Hyperstimulation Syndrome by Early Aspiration of Small Follicles in Hyper-responsive Patients With Polycystic Ovaries During Assisted Reproductive Treatment Cycles". Medscape General Medicine. 7 (3): 60. PMC   1681679 . PMID   16369286.
  13. Liberty G, Hyman JH, Eldar-Geva T, Latinsky B, Gal M, Margalioth EJ (2008). "Ovarian hemorrhage after transvaginal ultrasonographically guided oocyte aspiration: a potentially catastrophic and not so rare complication among lean patients with polycystic ovary syndrome". Fertility and Sterility. 93 (3): 874–9. doi: 10.1016/j.fertnstert.2008.10.028 . PMID   19064264.
  14. Christiaens, F; Janssenswillen, C; Verborgh, C; Moerman, I; Devroey, P; Van Steirteghem, A; Camu, F (February 1999). "Propofol concentrations in follicular fluid during general anaesthesia for transvaginal oocyte retrieval" (PDF). Human Reproduction. 14 (2): 345–8. doi:10.1093/humrep/14.2.345. PMID   10099976.
  15. Cohen J, Gilligan A, Esposito W, Schimmel T, Dale B (1997). "Ambient air and its potential effects on conception in vitro". Human Reproduction. 12 (8): 1742–9. doi: 10.1093/humrep/12.8.1742 . PMID   9308805.
  16. Cohen J, Gilligan A, Willadsen S (June 1998). "Culture and quality control of embryos". Human Reproduction. 13 (Suppl 3): 137–44. doi: 10.1093/humrep/13.suppl_3.137 . PMID   9755420.
  17. Kasapoğlu, Işıl; Türk, Pınar; Dayan, Aylin; Uncu, Gürkan (September 2018). "Does the presence of endometriosis cause a challenge for transvaginal oocyte retrieval? A comparison between patients with and without endometriosis". Journal of the Turkish German Gynecological Association. 19 (3): 151–157. doi:10.4274/jtgga.2017.0146. ISSN   1309-0399. PMC   6085525 . PMID   29545228.
  18. Dellenbach P, Nisand I, Moreau L, Feger B, Plumere C, Gerlinger P, Brun B, Rumpler Y (June 30, 1984). "Transvaginal, sonographically controlled ovarian follicle puncture for egg retrieval". Lancet . 1 (8392): 1467. doi:10.1016/s0140-6736(84)91958-5. PMID   6145902. S2CID   41098471.

Further reading