Procedural sedation and analgesia

Last updated
Procedural sedation and analgesia
MeSH D016292
MedlinePlus 007409

Procedural sedation and analgesia (PSA) is a technique in which a sedating/dissociative medication is given, usually along with an analgesic medication, in order to perform non-surgical procedures on a patient. The overall goal is to induce a decreased level of consciousness while maintaining the patient's ability to breathe on their own. Airway protective reflexes are not compromised by this process [1] and therefore endotracheal intubation is not required. PSA is commonly used in the emergency department, in addition to the operating room.

Contents

Medical uses

This technique is often used in the emergency department for the performance of painful or uncomfortable procedures. Common purposes include:

Contraindications

There are no absolute reasons that immediately disqualify a patient from receiving PSA. However, a patient's age, medical comorbidities, or evidence of a difficult airway are important considerations.[ citation needed ]

Age

Although there is no age limit for PSA, the elderly have a greater chance of complications such as longer than intended sedation time, increased sensitivity to medications, adverse effects of medications, and higher than expected drug levels due to difficulty clearing the drugs. To help reduce risk of complications, consider a less aggressive approach to PSA, including starting with a smaller dose than given for non-elderly patients, giving the medication slowly, giving repeat doses of the medications less often. [3]

Comorbidities

Patients with serious medical conditions are at greater chance for negative side effects after receiving PSA. Examples of comorbidities include heart failure, COPD, neuromuscular disease. Use the ASA Classification to predict a patient's risk for serious complications from PSA, such as hypotension or respiratory depression. Generally, patients with ASA Class III or greater are more likely to develop such complications. Similar to previously described, consider starting with a smaller dose, giving the medication slowly, and giving repeat doses of the medications less often to decrease risk of complications associated with comorbidities. [3]

Difficult airway

An airway is assessed by the patient's ability or the physician's ability to oxygenate (provide oxygen) or ventilate (exhale carbon dioxide). Examples of a difficult airway include a thick neck/obese patient, head and neck structural abnormalities, and lung disease. The problem is not that the patient will not respond appropriately to medications, as is the case with older patients or those with medical comorbidities, but that if there is a complication, it will be more difficult for the physician to protect the patient's airway and save them from complications. It is generally advised to consider alternatives to PSA if the patient is assessed to have a difficult airway. Measures such as reducing starting dose, giving drugs slowly, and redosing less frequently will not change risk of PSA complications in a patient with a difficult airway. [3]

Spectrum of Sedation

While procedural sedation is often used to avoid airway intervention, sedation is a continuum and a patient can easily slip into a deeper state. For this reason, a physician who is performing PSA should be prepared to care for a patient at least one level of sedation greater than that intended. [1] In order to do this, a practitioner must be able to recognize the level of sedation and understand the increasing cardiopulmonary risk that is associated with deeper sedation. [4]

The American Society of Anesthesiologists defines the continuum of sedation as follows: [5]

Minimal SedationModerate SedationDeep SedationGeneral Anesthesia
ResponsivenessNormal to verbal stimulusPurposeful response to verbal or tactile stimulusPurposeful to repeated or painful stimulusUnarousable, even to painful stimulus
AirwayUnaffectedNo intervention requiredIntervention may be requiredIntervention often required
VentilationUnaffectedAdequateMay be inadequateFrequently inadequate
Cardiovascular FunctionUnaffectedUsually maintainedUsually maintainedMay be impaired

There is another type of sedation known as dissociative sedation. It causes profound amnesia but allows spontaneous respiration, cardiopulmonary stability, and airway reflexes are still intact. Ketamine is a commonly used drug that can cause this type of sedation. [4]

Sedative agents

Propofol

Propofol [6] is a non-barbiturate derivative that is thought to act by stimulating inhibitory GABA receptors and blocking excitatory NMDA receptors. It takes 40 seconds for the effects of propofol to kick in, and effects last six minutes. [3] Propofol has both sedative and amnestic effects, but provides no analgesia. Adverse effects to look out for include hypotension (low blood pressure) and respiratory depression, manifested as mild drops in oxygen saturation levels. Propofol is also painful when administered intravenously, therefore, lidocaine is commonly used as a pretreatment to help decrease the pain associated with administering propofol.[ dubious ] Additionally, it[ clarification needed ] has antiemetic properties that are also useful in these types of procedures. [7]

Etomidate

Etomidate is an imidazole derivative, commonly used for the induction of general anesthesia. Effects kick in almost immediately, within 5–15 seconds, and last 5–15 minutes. [3] Etomidate carries sedative effects only; it does not provide pain relief. Side effects of etomidate include myoclonus (involuntary muscle jerking) and respiratory depression. One of the major benefits of etomidate is that it does not cause cardiovascular or respiratory instability. [7] This makes it a potentially more preferable choice for those with already lower blood pressure.

Midazolam

Midazolam [6] is a benzodiazepine that acts by stimulating inhibitory GABA receptors. Effects are seen within 2–5 minutes, and last 30–60 minutes. [7] [3] Its main effect is anxiolysis, helping to reduce feelings of anxiety, and amnestic effects, helping the patient to forget memories associated with the procedure. It provides no analgesia, so it was commonly used with fentanyl for effective PSA prior to propofol and etomidate. Midazolam collects in the body's fatty tissues, so a possible complication includes prolonged sedation. As a result, the elderly, the obese, and those with kidney or liver disease are more vulnerable to prolonged sedation with midazolam. Respiratory depression is also associated with midazolam when given in high doses.

Ketamine

Ketamine is a dissociative sedative, meaning it takes the patient into a dream-like level of consciousness. Effects occur within 30 seconds, and last 5–20 minutes. [7] Ketamine has sedative, analgesic, and amnestic properties, but most of its uses today are focused on analgesia. Some of the benefits of ketamine is that it does not compromise the patient's airway protective reflexes, keeps the upper airway muscle tone, and allows for spontaneous breathing. A common side effect of ketamine is emergence reactions. The patient may become disoriented, entranced, or experience hallucinations. Although usually benign, these reactions may also be frightening for the patient. Other reported complications include fast heart rate, elevated blood pressure, nausea, vomiting, and laryngospasm, but usually in the context of oropharyngeal manipulation.

Dexmedetomidine

Dexmedetomidine is a more recent agent used in this process. It is an alpha-2 adrenergic agonist that causes sedation and does have some analgesic properties. It has minimal effect on respiratory function. It will affect cardiac function as the dose increases. [7]

Analgesic agents

Opioids

Opioids are used to suppress pain by acting primarily on μ-opioid receptors (MOR) in addition to various other opioid receptors located within the central nervous system. They will cause some dose dependent cardiopulmonary suppression. [7] They have addictive properties and have led to the opioid epidemic. When used for procedural sedation these are started at low dose then titrated to reach the desired effect. [1]

Fentanyl is a synthetic opioid, 75-125 times stronger than morphine, [3] that acts by activating opioid receptors in the nervous system. Its effects begin in 2–3 minutes, and last 30–60 minutes. Fentanyl provides analgesia and sedative properties; it does not have any amnestic effects. It was commonly used with midazolam for effective PSA prior to propofol and etomidate. The major complication of fentanyl is respiratory depression, which can be made worse when given with other sedative agents.

Ketamine, as stated above, has both analgesic and sedative properties and can be useful as an alternative analgesic agent; small doses of ketamine have been found to be safer than fentanyl when used in combination with propofol. [8]

Assessment

Any patient undergoing anaesthesia must be pre-assessed for risk using a classification system, such as the one devised by the American Society of Anesthesiologists (ASA). In addition to pre-assessment, the patients medical history should be taken with special attention to history of anaesthesia. These things contribute to the ASA physical status classification system. This system starts at ASA 1 which is a healthy individual and escalates to ASA 6 which is a brain dead individual. [4] It is safe to perform sedation in the emergency room on patients who are ASA 1 or 2. If the patient is ASA 3 or 4 additional resources might be needed, such as a person with more training in procedural sedation, an anesthesiologist. [1] Furthermore, before a qualified anesthesia professional performs PSA, an Informed consent should be completed. [4]

Airway assessment is one of the most important parts of the physical exam when done as part of the pre-procedure work-up. There is always a risk that a patient is sedated more heavily than intended and consequently require some sort of airway intervention. Therefore, the anesthetist should perform an airway exam that includes a Mallampati score, mouth opening assessment, and Thyromental distance. If the patient is deemed to have a difficult airway, there should be adequate resources if airway intervention is required. These includes things like a Glidescope, fiberscope optic, and an intubating Laryngeal mask airway. [4]

Safety and Monitoring

It is important to keep track of the patient's vital signs, especially oxygen saturation and blood pressure [1] when giving PSA to ensure adequate cardiopulmonary function. Monitors are also useful for PSA safety. These include cardiac monitoring such as electrocardiogram, pulse oximetry, blood pressure cuff, and an end tidal carbon dioxide monitor. [4] [9] Deep sedation resulting in respiratory depression can cause some quantitative changes to these monitors, hence why it is important to monitor them. One of the first things that can be seen is a rise in end tidal carbon dioxide. This happens well before a drop in oxygen saturation. Depending on the how substantial the respiratory depression, the physician can use supplemental oxygen or other airway interventions to stabilize the patient. [4] Visual assessment is also an important part of PSA. To quantify the level of consciousness, the physician uses different levels of stimulation and observes the patient's response.

Aspiration risk

There is a theoretical concern that performing PSA on a patient with food in their stomach can increase the risk of aspiration. Currently, there is no evidence to suggest clinically significant risk of aspiration of stomach contents if performing PSA on a patient with recent food intake. In fact, there is evidence to suggest that fasting is not required to prevent aspiration in most cases. [10] However, when possible, fasting is still preferred. [1] For most agents, the patient should have had nothing to eat for at least six hours. Clear fluids can be allowed up to two hours before the procedure. One can consider using ketamine if there is a high risk of aspiration, given ketamine does not compromise protective airway reflexes. However, in the emergency department setting, PSA is usually administered without waiting the full six hours, unless there is clear evidence that the patient may not be able to maintain his/her airway on their own. [11]

Discharge criteria

Patient being monitored following anesthesia Anesthesia recovery modified.jpg
Patient being monitored following anesthesia

There are a few criteria for discharging a patient who has undergone procedural sedation. The recovery time for a patient to be ready for discharge varies but is typically 60–120 minutes. The criteria are as follows:

  1. Patient must be stable from a cardiovascular standpoint and have an open airway.
  2. The patient should be easy to arouse and have intact reflexes such as a gag and cough reflex.
  3. They should be approaching their baseline in terms of talking and sitting up.
  4. The patient should be properly hydrated.
  5. In a special population patient, such as a very young or mentally disabled patient, they should be about as responsive as they were pre-sedation. [12]

Complications

PSA can cause several complications. These include allergic reactions, over-sedation, respiratory depression, and hemodynamic effects. These typically depend on the sedative agent used. Some agents are more likely to cause complications than others, but all sedative agents can cause complications if not used properly. Titration is a common technique used to reduce these complications. Additionally, some agents have antagonists, reversal agents, that can be used to reverse the effects or reduce the amount of sedation. Additionally, a person is assigned to monitor the status of the patient and should be able to recognize the complications of PSA. Their ability to alert others and respond accordingly reduces complications. [1]

Controversies

Some resistance to sedation techniques used outside the operating room by non-anesthetists has been voiced. [13]

Related Research Articles

General anaesthetics are often defined as compounds that induce a loss of consciousness in humans or loss of righting reflex in animals. Clinical definitions are also extended to include an induced coma that causes lack of awareness to painful stimuli, sufficient to facilitate surgical applications in clinical and veterinary practice. General anaesthetics do not act as analgesics and should also not be confused with sedatives. General anaesthetics are a structurally diverse group of compounds whose mechanisms encompass multiple biological targets involved in the control of neuronal pathways. The precise workings are the subject of some debate and ongoing research.

<span class="mw-page-title-main">Ketamine</span> Dissociative medication

Ketamine is a dissociative anesthetic used medically for induction and maintenance of anesthesia. It is also used as a treatment for depression, a pain management tool, and as a recreational drug. Ketamine is a novel compound that was derived from phencyclidine in 1962 in pursuit of a safer anesthetic with fewer hallucinogenic effects.

Sedation is the reduction of irritability or agitation by administration of sedative drugs, generally to facilitate a medical procedure or diagnostic procedure. Examples of drugs which can be used for sedation include isoflurane, diethyl ether, propofol, etomidate, ketamine, pentobarbital, lorazepam and midazolam.

A sedative or tranquilliser is a substance that induces sedation by reducing irritability or excitement. They are CNS depressants and interact with brain activity causing its deceleration. Various kinds of sedatives can be distinguished, but the majority of them affect the neurotransmitter gamma-aminobutyric acid (GABA). In spite of the fact that each sedative acts in its own way, most produce relaxing effects by increasing GABA activity.

<span class="mw-page-title-main">General anaesthesia</span> Medically induced loss of consciousness

General anaesthesia (UK) or general anesthesia (US) is a method of medically inducing loss of consciousness that renders a patient unarousable even with painful stimuli. This effect is achieved by administering either intravenous or inhalational general anaesthetic medications, which often act in combination with an analgesic and neuromuscular blocking agent. Spontaneous ventilation is often inadequate during the procedure and intervention is often necessary to protect the airway. General anaesthesia is generally performed in an operating theater to allow surgical procedures that would otherwise be intolerably painful for a patient, or in an intensive care unit or emergency department to facilitate endotracheal intubation and mechanical ventilation in critically ill patients.

<span class="mw-page-title-main">Propofol</span> Intravenous medication used in anesthesia

Propofol is the active component of an intravenous anesthetic formulation used for induction and maintenance of general anesthesia. It is chemically termed 2,6-diisopropylphenol. The formulation was originally approved under the brand name Diprivan. Numerous generic offerings of this formulation now exist. Intravenous administration is used to induce unconsciousness after which anesthesia may be maintained using a combination of medications. It is manufactured as part of a sterile injectable emulsion formulation using soybean oil and lecithin, giving it a white milky coloration.

<span class="mw-page-title-main">Midazolam</span> Benzodiazepine used for anesthesia and procedural sedation

Midazolam, sold under the brand name Versed among others, is a benzodiazepine medication used for anesthesia and procedural sedation, and to treat severe agitation. It induces sleepiness, decreases anxiety, and causes anterograde amnesia.

<span class="mw-page-title-main">Anesthetic</span> Drug that causes anesthesia

An anesthetic or anaesthetic is a drug used to induce anesthesia ⁠— ⁠in other words, to result in a temporary loss of sensation or awareness. They may be divided into two broad classes: general anesthetics, which result in a reversible loss of consciousness, and local anesthetics, which cause a reversible loss of sensation for a limited region of the body without necessarily affecting consciousness.

<span class="mw-page-title-main">Sufentanil</span> Synthetic opioid analgesic drug

Sufentanil, sold under the brand names Dsuvia and Sufenta, is a synthetic opioid analgesic drug approximately 5 to 10 times as potent as its parent drug, fentanyl, and 500 times as potent as morphine. Structurally, sufentanil differs from fentanyl through the addition of a methoxymethyl group on the piperidine ring, and the replacement of the phenyl ring by thiophene. Sufentanil first was synthesized at Janssen Pharmaceutica in 1974.

<span class="mw-page-title-main">Remifentanil</span> Synthetic opioid analgesic

Remifentanil, marketed under the brand name Ultiva is a potent, short-acting synthetic opioid analgesic drug. It is given to patients during surgery to relieve pain and as an adjunct to an anaesthetic. Remifentanil is used for sedation as well as combined with other medications for use in general anesthesia. The use of remifentanil has made possible the use of high-dose opioid and low-dose hypnotic anesthesia, due to synergism between remifentanil and various hypnotic drugs and volatile anesthetics.

In anaesthesia and advanced airway management, rapid sequence induction (RSI) – also referred to as rapid sequence intubation or as rapid sequence induction and intubation (RSII) or as crash induction – is a special process for endotracheal intubation that is used where the patient is at a high risk of pulmonary aspiration. It differs from other techniques for inducing general anesthesia in that several extra precautions are taken to minimize the time between giving the induction drugs and securing the tube, during which period the patient's airway is essentially unprotected.

<span class="mw-page-title-main">Xylazine</span> Veterinary anesthetic, sedative and analgesic

Xylazine is a drug used for sedation, anesthesia, muscle relaxation, and analgesia in animals such as horses, cattle, and other non-human mammals. It is an analog of clonidine and an agonist at the α2 class of adrenergic receptor.

<span class="mw-page-title-main">Etomidate</span> Short-acting anaesthetic and sedative drug

Etomidate is a short-acting intravenous anaesthetic agent used for the induction of general anaesthesia and sedation for short procedures such as reduction of dislocated joints, tracheal intubation, cardioversion and electroconvulsive therapy. It was developed at Janssen Pharmaceutica in 1964 and was introduced as an intravenous agent in 1972 in Europe and in 1983 in the United States.

<span class="mw-page-title-main">Dexmedetomidine</span> Anxiolytic, sedative, and pain medication

Dexmedetomidine, sold under the trade name Precedex among others, is a drug used in humans for sedation. Veterinarians use dexmedetomidine for similar purposes in treating cats, dogs, and horses. It is also used in humans to treat acute agitation associated with schizophrenia or bipolar I or II disorder.

<span class="mw-page-title-main">Piritramide</span> Synthetic opioid

Piritramide(R-3365, trade names Dipidolor, Piridolan, Pirium and others) is a synthetic opioid analgesic that is marketed in certain European countries including: Austria, Belgium, Czech Republic, Slovenia, Germany and the Netherlands. It comes in free form, is about 0.75x times as potent as morphine and is given parenterally for the treatment of severe pain. Nausea, vomiting, respiratory depression and constipation are believed to be less frequent with piritramide than with morphine, and it produces more rapid-onset analgesia when compared to morphine and pethidine. After intravenous administration the onset of analgesia is as little as 1–2 minutes, which may be related to its great lipophilicity. The analgesic and sedative effects of piritramide are believed to be potentiated with phenothiazines and its emetic (nausea/vomiting-inducing) effects are suppressed. The volume of distribution is 0.7-1 L/kg after a single dose, 4.7-6 L/kg after steady-state concentrations are achieved and up to 11.1 L/kg after prolonged dosing.

Veterinary anesthesia is anesthesia performed on non-human animals by a veterinarian or a Registered Veterinary Technician. Anesthesia is used for a wider range of circumstances in animals than in people, due to animals' inability to cooperate with certain diagnostic or therapeutic procedures. Veterinary anesthesia includes anesthesia of the major species: dogs, cats, horses, cattle, sheep, goats, and pigs, as well as all other animals requiring veterinary care such as birds, pocket pets, and wildlife.

<span class="mw-page-title-main">Opioid overdose</span> Medical condition

An opioid overdose is toxicity due to excessive consumption of opioids, such as morphine, codeine, heroin, fentanyl, tramadol, and methadone. This preventable pathology can be fatal if it leads to respiratory depression, a lethal condition that can cause hypoxia from slow and shallow breathing. Other symptoms include small pupils, and unconsciousness, however its onset can depend on the method of ingestion, the dosage and individual risk factors. Although there were over 110,000 deaths in 2017 due to opioids, individuals who survived also faced adverse complications, including permanent brain damage.

<span class="mw-page-title-main">Twilight anesthesia</span> Anesthetic technique

Twilight anesthesia is an anesthetic technique where a mild dose of sedation is applied to induce anxiolysis, hypnosis, and anterograde amnesia. The patient is not unconscious, but sedated. During surgery or other medical procedures, the patient is under what is known as a "twilight state", where the patient is relaxed and "sleepy", able to follow simple directions by the doctor, and is responsive. Generally, twilight anesthesia causes the patient to forget the surgery and the time right after. It is used for a variety of surgical procedures and for various reasons. Just like regular anesthesia, twilight anesthesia is designed to help a patient feel more comfortable and to minimize pain associated with the procedure being performed and to allow the medical practitioner to practice without interruptions.

<span class="mw-page-title-main">Coinduction (anesthetics)</span>

Coinduction in anesthesia is a pharmacological tool whereby a combination of sedative drugs may be used to greater effect than a single agent, achieving a smoother onset of general anesthesia. The use of coinduction allows lower doses of the same anesthetic agents to be used which provides enhanced safety, faster recovery, fewer side-effects, and more predictable pharmacodynamics. Coinduction is used in human medicine and veterinary medicine as standard practice to provide optimum anesthetic induction. The onset or induction phase of anesthesia is a critical period involving the loss of consciousness and reactivity in the patient, and is arguably the most dangerous period of a general anesthetic. A great variety of coinduction combinations are in use and selection is dependent on the patient's age and health, the specific situation, and the indication for anesthesia. As with all forms of anesthesia the resources available in the environment are a key factor.

Total intravenous anesthesia (TIVA) refers to the intravenous administration of anesthetic agents to induce a temporary loss of sensation or awareness. The first study of TIVA was done in 1872 using chloral hydrate, and the common anesthetic agent propofol was licensed in 1986. TIVA is currently employed in various procedures as an alternative technique of general anesthesia in order to improve post-operative recovery.

References

  1. 1 2 3 4 5 6 7 Walls, Ron M., MD; Hockberger, Robert S., MD; Gausche-Hill, Marianne, MD, FACEP, FAAP, FAEMS (2018). Rosen's Emergency Medicine: Concepts and Clinical Practice. Ninth Edition. Elsevier.[ page needed ]
  2. "BestBets: Procedural Sedation for Cardioversion". bestbets.org.
  3. 1 2 3 4 5 6 7 Frank, Robert. "Procedural sedation in adults outside the operating room". Uptodate.
  4. 1 2 3 4 5 6 7 Stone, C. Keith (2017). "Procedural Sedation and Analgesia". CURRENT Diagnosis & Treatment: Emergency Medicine. McGraw-Hill Education.
  5. "Continuum of Depth of Sedation; Definition of General Anesthesia and Levels of Sedation/Analgesia". American Society of Anesthesiologists (ASA). 2009. Archived from the original on 2010-10-27. Retrieved 2010-10-21.
  6. 1 2 Hohl, Corinne Michèle; Sadatsafavi, Mohsen; Nosyk, Bohdan; Anis, Aslam Hayat (16 January 2008). "Safety and Clinical Effectiveness of Midazolam versus Propofol for Procedural Sedation in the Emergency Department: A Systematic Review". Academic Emergency Medicine. 15 (1): 1–8. doi:10.1111/j.1553-2712.2007.00022.x. PMID   18211306.
  7. 1 2 3 4 5 6 Miller, Ronald D.; Eriksson, Lars I.; Fleisher, Lee A.; Wiener-Kronish, Jeanine P.; Cohen, Neal H.; Young, William L. (2014). Miller's Anesthesia. Elsevier Health Sciences. ISBN   978-0-323-28011-2.[ page needed ]
  8. Messenger, David W.; Murray, Heather E.; Dungey, Paul E.; van Vlymen, Janet; Sivilotti, Marco L.A. (October 2008). "Subdissociative-dose Ketamine versus Fentanyl for Analgesia during Propofol Procedural Sedation: A Randomized Clinical Trial". Academic Emergency Medicine. 15 (10): 877–886. doi: 10.1111/j.1553-2712.2008.00219.x . PMID   18754820. S2CID   6455843.
  9. Miner, James R.; Burton, John H. (August 2007). "Clinical Practice Advisory: Emergency Department Procedural Sedation With Propofol". Annals of Emergency Medicine. 50 (2): 182–187.e1. doi:10.1016/j.annemergmed.2006.12.017. PMID   17321006.
  10. Green, S.M.; Mason, K.P.; Krauss, B.S. (March 2017). "Pulmonary aspiration during procedural sedation: a comprehensive systematic review". British Journal of Anaesthesia. 118 (3): 344–354. doi: 10.1093/bja/aex004 . PMID   28186265.
  11. "BestBets: Does the time of fasting affect complication rates during ketamine sedation". bestbets.org.
  12. Berger, Jessica; Koszela, Keri (2018). The Harriet Lane Handbook. Elsevier.
  13. Krauss, Baruch; Green, Steven M (March 2006). "Procedural sedation and analgesia in children". The Lancet. 367 (9512): 766–780. doi:10.1016/S0140-6736(06)68230-5. PMID   16517277. S2CID   19960762.