Floral scent, or flower scent, is composed of all the volatile organic compounds (VOCs), or aroma compounds, emitted by floral tissue (e.g. flower petals). Other names for floral scent include, aroma, fragrance, floral odour or perfume. Flower scent of most flowering plant species encompasses a diversity of VOCs, sometimes up to several hundred different compounds. [1] [2] The primary functions of floral scent are to deter herbivores and especially folivorous insects (see Plant defense against herbivory), and to attract pollinators. Floral scent is one of the most important communication channels mediating plant-pollinator interactions, along with visual cues (flower color, shape, etc.). [3]
Flower visitors such as insects and bats detect floral scents thanks to chemoreceptors of variable specificity to a specific VOC. The fixation of a VOC on a chemoreceptor triggers the activation of an antennal glomerulus, further projecting on an olfactory receptor neuron and finally triggering a behavioral response after processing the information (see also Olfaction, Insect olfaction). The simultaneous perception of various VOCs may cause the activation of several glomeruli, but the output signal may not be additive due to synergistic or antagonistic mechanisms linked with inter-neuronal activity. [5] Therefore, the perception of a VOC within a floral blend may trigger a different behavioral response than when perceived isolated. Similarly, the output signal is not proportional to the amount of VOCs, with some VOCs in low amounts in the floral blend having major effects on pollinator behavior. A good characterization of floral scent, both qualitative and quantitative, is necessary to understand and potentially predict flower visitors' behavior.
Flower visitors use floral scents to detect, recognize and locate their host species and even discriminate among flowers of the same plant. [6] This is made possible by the high specificity of floral scent, where both diversity of VOCs and their relative amount may characterize the flowering species, an individual plant, a flower of the plant, and the distance of the plume from the source.
To make the best use of this specific information, flower visitors rely on long-term and short-term memory that allows them to efficiently choose their flowers. [7] They learn to associate the floral scent of a plant with a reward such as nectar and pollen, [8] and have different behavioral responses to known scents versus unknown ones. [9] They are also able to react similarly to slightly different odor blends. [10]
A primary function of floral scent is to attract pollinators and ensure the reproduction of animal-pollinated plants.
Some families of VOCs presented in floral scents have likely evolved as herbivore repellents. [12] However, these plant defenses are also used by herbivores themselves to locate a plant resource, similar to pollinators attracted by the floral scent. [13] Therefore, flower traits can be subject to antagonistic selection pressures (positive selection by pollinators and negative selection by herbivores). [14]
Plants have an array of volatile compounds they can release to signal other plants. By unleashing these cues, plants learn more about their environment and sufficiently respond. However, there are still many factors about plant scents scientists are still trying to understand. Scientists have studied how many of the volatile compounds released by plants are from a floral source. A study concluded that floral cues are as important as other volatile compounds and are pertinent for plant-to-plant communication. [15] Further research found that plants which receive the floral volatiles have higher fitness than other volatile cues because floral cues are the only compounds released by plants that indicate their kind of mating environment. [16] Plants are able to respond to these mating cues and change adjustable floral phenotypes that can affect plant pollination and mating. Floral volatiles can ward off or attract pollinators/mates all at once. Depending on the number of floral signals released by a plant can control the level of attracting/repelling the plant wants. The composition of floral compounds and the rate of their release are the potential factors that control attraction/repellence. These two elements can be in response to ecological cues like high plant density and temperature. [17] For instance, in sexually deceptive orchids, floral scents emitted after pollination reduce the flower's attractiveness to pollinators. This mechanism acts as a signal to pollinators to visit unpollinated flowers. [18]
Environmental conditions can affect plant communication and signaling. Signal factors include temperature and plant density. Environmentally high temperatures increase the rate of releasing floral compounds, which can increase the amount of signal released and thus its ability to reach more plants. [17] When plant density increases, plant communication increases as well, since plants would be near each other and have signals reach many neighboring plants. This can also increase the signal's reliability and lowering the chance the signal will degrade before it can reach other plants. [17]
Most floral VOCs belong to three main chemical classes. [2] [6] VOCs in the same chemical class are synthesized from a shared precursor, but the biochemical pathway is specific for each VOC and often varies from one plant species to another.
Terpenoids (or isoprenoids) are derived from isoprene and synthesized via the mevalonate pathway or the erythritol phosphate pathway. They represent the majority of floral VOCs and are often the most abundant compounds in floral scent blends. [19]
The second chemical class is composed of the fatty acid derivatives synthesized from acetyl-CoA, most of which are known as green leaf volatiles, because they are also emitted by vegetative parts (i.e.: leaves and stems) of plants, and sometimes higher in abundance than from floral tissue.
The third chemical class is composed of benzenoids/phenylpropanoids, also known as aromatic compounds; they are synthesized from phenylalanine.
Floral scent emissions of most flowering plants vary predictably throughout the day, following a circadian rhythm. This variation is controlled by light intensity. [20] Maximal emissions coincide with peaks of the highest activity of visiting pollinators. For instance, snapdragon flowers, mostly pollinated by bees, have the highest emissions at noon, whereas nocturnally-visited tobacco plants have the highest emissions at night. [21]
Floral scent emissions also vary along with floral development, with the highest emissions at anthesis, [22] i.e. when the flower is fecund (highly fertile), and reduced emissions after pollination, probably due to mechanisms linked with fecundation. [23] In tropical orchids, floral scent emission is terminated immediately following pollination, reducing the expenditure of energy on fragrance production. [24] In petunia flowers, ethylene is released to stop the synthesis of benzenoid floral volatiles after successful pollination. [25]
Abiotic factors, such as temperature, atmospheric CO2 concentration, hydric stress, and soil nutrient status also impact the regulation of floral scent. [26] For instance, increased temperatures in the environment can increase the emission of VOCs in flowers, potentially altering communication between plants and pollinators. [17]
Finally, biotic interactions may also affect the floral scent. Plant leaves attacked by herbivores emit new VOCs in response to the attack, the so-called herbivore-induced plant volatiles (HIPVs). [27] Similarly, damaged flowers have a modified floral scent compared to undamaged ones. Micro-organisms present in nectar may alter floral scent emissions as well. [28]
Measuring floral scent both qualitatively (identification of VOCs) and quantitatively (absolute and/or relative emission of VOCs) requires the use of analytical chemistry techniques. It requires collecting floral VOCs, and then analyzing them.
The most popular methods rely on adsorbing floral VOCs on an adsorbent material such as SPME fibers or cartridges by pumping air sampled around inflorescences through the adsorbent material.
It is also possible to extract chemicals stocked in petals by immersing them in a solvent and then analyze the liquid residue. This is more adapted to the study of heavier organic compounds, and/or VOCs that are stored in floral tissue before being emitted into air.
Gas chromatography (GC) is ideal to separate volatilized VOCs due to their low molecular weight. VOCs are carried by a gas vector (helium) through a chromatographic column (the solid phase) on which they have different affinities, which allows to separate them.
Liquid chromatography may be used for liquid extractions of floral tissue.
Separation systems are coupled with a detector, that allows the detection and identification of VOCs based on their molecular weight and chemical properties. The most used system for the analysis of floral scent samples is GC-MS (gas chromatography coupled with mass spectrometry).
Quantification of VOCs is based on the peak area measured on the chromatogram and compared to the peak area of a chemical standard: [29]
Floral scent is often composed of hundreds of VOCs, in very variable proportions. The method used is a tradeoff between accurately detecting quantifying minor compounds and avoiding detector saturation by major compounds. For most analysis methods routinely used, the detection threshold of many VOCs is still higher than the perception threshold of insects, [31] which reduces our capacity to understand plant-insect interactions mediated by floral scent.
Further, the chemical diversity in floral scent samples is challenging. The time of analysis is proportional to the range in molecular weight of VOCs present in the sample, hence a high diversity will increase analysis time. Floral scent may also be composed of very similar molecules, such as isomers and especially enantiomers, which tend to co-elute and then to be very hardly separated. Unambiguously detecting and quantifying them is of importance though, as enantiomers may trigger very different responses in pollinators. [32]
Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.
Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at room temperature. They are common and exist in a variety of settings and products, not limited to house mold, upholstered furniture, arts and crafts supplies, dry cleaned clothing, and cleaning supplies. VOCs are responsible for the odor of scents and perfumes as well as pollutants. They play an important role in communication between animals and plants, such as attractants for pollinators, protection from predation, and even inter-plant interactions. Some VOCs are dangerous to human health or cause harm to the environment, often despite the odor being perceived as pleasant, such as "new car smell".
Cirsium arvense is a perennial species of flowering plant in the family Asteraceae, native throughout Europe and western Asia, northern Africa and widely introduced elsewhere. The standard English name in its native area is creeping thistle. It is also commonly known as Canada thistle and field thistle.
A semiochemical, from the Greek σημεῖον (semeion), meaning "signal", is a chemical substance or mixture released by an organism that affects the behaviors of other individuals. Semiochemical communication can be divided into two broad classes: communication between individuals of the same species (intraspecific) or communication between different species (interspecific).
Nectar is a viscous, sugar-rich liquid produced by plants in glands called nectaries, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists, which in turn provide herbivore protection. Common nectar-consuming pollinators include mosquitoes, hoverflies, wasps, bees, butterflies and moths, hummingbirds, honeyeaters and bats. Nectar plays a crucial role in the foraging economics and evolution of nectar-eating species; for example, nectar foraging behavior is largely responsible for the divergent evolution of the African honey bee, A. m. scutellata and the western honey bee.
Plant defense against herbivory or host-plant resistance is a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores or reduce plant digestibility. Another defensive strategy of plants is changing their attractiveness. Plants can sense being touched, and they can respond with strategies to defend against herbivores. To prevent overconsumption by large herbivores, plants alter their appearance by changing their size or quality, reducing the rate at which they are consumed.
Gomphrena globosa, commonly known as globe amaranth, is an edible plant from the family Amaranthaceae. The round-shaped flower inflorescences are a visually dominant feature and cultivars have been propagated to exhibit shades of magenta, purple, red, orange, white, pink, and lilac. Within the flowerheads, the true flowers are small and inconspicuous.
Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem. This interaction is mostly mediated by the secretion and detection of chemicals (semiochemical) in the environment by insects. Semiochemicals are secreted by the organisms in the environment and they are detected by other organism such as insects. Semiochemicals used by organisms, including (insects) to interact with other organism either of the same species or different species can generally grouped into four. These are pheromone, synomones, allomone and kairomone. Pheromones are semiochemicals that facilitates interaction between organisms of same species. Synomones benefit both the producer and receiver, allomone is advantageous to only the producer whiles kairomones is beneficial to the receiver.
Headspace technology is a technique developed in the 1980s to elucidate the odor compounds present in the air surrounding various objects. Usually the objects of interest are odoriferous objects such as plants, flowers and foods. Similar techniques are also used to analyze the interesting scents of locations and environments such as tea shops and saw mills. After the data is analyzed, the scents can then be recreated by a perfumer.
Nicotiana attenuata is a species of wild tobacco known by the common name coyote tobacco. It is native to western North America from British Columbia to Texas and northern Mexico, where it grows in many types of habitat. It is a glandular and sparsely hairy annual herb exceeding a meter in maximum height. The leaf blades may be 10 centimetres (4 in) long, the lower ones oval and the upper narrower in shape, and are borne on petioles. The inflorescence bears several flowers with pinkish or greenish white tubular throats 2 to 3 centimetres long, their bases enclosed in pointed sepals. The flower face has five mostly white lobes. The fruit is a capsule about 1 centimetre long.
Green leaf volatiles (GLV) are organic compounds released by plants. Some of these chemicals function as signaling compounds between either plants of the same species, of other species, or even different lifeforms like insects.
Chemical defense is a strategy employed by many organisms to avoid consumption by producing toxic or repellent metabolites or chemical warnings which incite defensive behavioral changes. The production of defensive chemicals occurs in plants, fungi, and bacteria, as well as invertebrate and vertebrate animals. The class of chemicals produced by organisms that are considered defensive may be considered in a strict sense to only apply to those aiding an organism in escaping herbivory or predation. However, the distinction between types of chemical interaction is subjective and defensive chemicals may also be considered to protect against reduced fitness by pests, parasites, and competitors. Repellent rather than toxic metabolites are allomones, a sub category signaling metabolites known as semiochemicals. Many chemicals used for defensive purposes are secondary metabolites derived from primary metabolites which serve a physiological purpose in the organism. Secondary metabolites produced by plants are consumed and sequestered by a variety of arthropods and, in turn, toxins found in some amphibians, snakes, and even birds can be traced back to arthropod prey. There are a variety of special cases for considering mammalian antipredatory adaptations as chemical defenses as well.
In evolutionary biology, mimicry in plants is where a plant evolves to resemble another organism physically or chemically. Mimicry in plants has been studied far less than mimicry in animals. It may provide protection against herbivory, or may deceptively encourage mutualists, like pollinators, to provide a service without offering a reward in return.
(E)-β-Ocimene synthase (EC 4.2.3.106, β-ocimene synthase, AtTPS03, ama0a23, LjEbetaOS, MtEBOS) is an enzyme with systematic name geranyl-diphosphate diphosphate-lyase ((E)-β-ocimene-forming). This enzyme catalyses the following chemical reaction
Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals.
Volatolomics is a branch of chemistry that studies volatile organic compounds (VOCs) emitted by a biological system, under specific experimental conditions.
Floral biology is an area of ecological research that studies the evolutionary factors that have moulded the structures, behaviours and physiological aspects involved in the flowering of plants. The field is broad and interdisciplinary and involves research requiring expertise from multiple disciplines that can include botany, ethology, biochemistry, and entomology. A slightly narrower area of research within floral biology is sometimes called pollination biology or anthecology.
Plants are exposed to many stress factors such as disease, temperature changes, herbivory, injury and more. Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future. Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes, other plants, animals, insects, and fungi. Plants communicate through a host of volatile organic compounds (VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: fatty acid derivatives, phenylpropanoids/benzenoids, amino acid derivatives, and terpenoids. Due to the physical/chemical constraints most VOCs are of low molecular mass, are hydrophobic, and have high vapor pressures. The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific herbivore to reduce mechanical damage inflicted on the plant to the induction of chemical defenses of a neighboring plant before it is being attacked. In addition, the host of VOCs emitted varies from plant to plant, where for example, the Venus Fly Trap can emit VOCs to specifically target and attract starved prey. While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to "eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate. As related to the aspect of meaning-making, the field is also identified as phytosemiotics.
Bergamotenes are a group of isomeric chemical compounds with the molecular formula C15H24. The bergamotenes are found in a variety of plants, particularly in their essential oils.
Robert A. Raguso is an American biologist and professor at Cornell University in the Department of Neurobiology and Behavior. He has expanded the field of chemical ecology by introducing and pioneering floral scent as a key component of plant-pollinator communication, with special focus on hawkmoths and Clarkia plants.