Flower snark

Last updated
Flower snark
Flower snarks.svg
The flower snarks J3, J5 and J7.
Vertices 4n
Edges 6n
Girth 3 for n=3
5 for n=5
6 for n≥7
Chromatic number 3
Chromatic index 4
Book thickness 3 for n=5
3 for n=7
Queue number 2 for n=5
2 for n=7
Properties Snark for n≥5
NotationJn with n odd
Table of graphs and parameters
Flower snark J5
Flower snarkv.svg
The flower snark J5.
Vertices 20
Edges 30
Girth 5
Chromatic number 3
Chromatic index 4
Properties Snark
Hypohamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the flower snarks form an infinite family of snarks introduced by Rufus Isaacs in 1975. [1]

Contents

As snarks, the flower snarks are connected, bridgeless cubic graphs with chromatic index equal to 4. The flower snarks are non-planar and non-Hamiltonian. The flower snarks J5 and J7 have book thickness 3 and queue number 2. [2]

Construction

The flower snark Jn can be constructed with the following process :

By construction, the Flower snark Jn is a cubic graph with 4n vertices and 6n edges. For it to have the required properties, n should be odd.

Special cases

The name flower snark is sometimes used for J5, a flower snark with 20 vertices and 30 edges. [3] It is one of 6 snarks on 20 vertices (sequence A130315 in the OEIS ). The flower snark J5 is hypohamiltonian. [4]

J3 is a trivial variation of the Petersen graph formed by replacing one of its vertices by a triangle. This graph is also known as the Tietze's graph. [5] In order to avoid trivial cases, snarks are generally restricted to have girth at least 5. With that restriction, J3 is not a snark.

Related Research Articles

In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles, its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free.

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In graph theory, a uniquely colorable graph is a k-chromatic graph that has only one possible (proper) k-coloring up to permutation of the colors. Equivalently, there is only one way to partition its vertices into k independent sets and there is no way to partition them into k − 1 independent sets.

<span class="mw-page-title-main">Snark (graph theory)</span> 3-regular graph with no 3-edge-coloring

In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.

<span class="mw-page-title-main">Cubic graph</span> Graph with all vertices of degree 3

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

<span class="mw-page-title-main">Symmetric graph</span> Graph in which all ordered pairs of linked nodes are automorphic

In the mathematical field of graph theory, a graph G is symmetric if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

<span class="mw-page-title-main">Desargues graph</span> Distance-transitive cubic graph with 20 nodes and 30 edges

In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.

<span class="mw-page-title-main">Gray graph</span>

In the mathematical field of graph theory, the Gray graph is an undirected bipartite graph with 54 vertices and 81 edges. It is a cubic graph: every vertex touches exactly three edges. It was discovered by Marion C. Gray in 1932 (unpublished), then discovered independently by Bouwer 1968 in reply to a question posed by Jon Folkman 1967. The Gray graph is interesting as the first known example of a cubic graph having the algebraic property of being edge but not vertex transitive.

<span class="mw-page-title-main">Graph factorization</span>

In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors. A 2-factor is a collection of cycles that spans all vertices of the graph.

<span class="mw-page-title-main">Szekeres snark</span> Szekeres snark with 50 tops and 75 edges

In the mathematical field of graph theory, the Szekeres snark is a snark with 50 vertices and 75 edges. It was the fifth known snark, discovered by George Szekeres in 1973.

<span class="mw-page-title-main">Coxeter graph</span> Cubic graph with 28 vertices and 42 edges

In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter.

<span class="mw-page-title-main">Hypohamiltonian graph</span> Type of graph in graph theory

In the mathematical field of graph theory, a graph G is said to be hypohamiltonian if G itself does not have a Hamiltonian cycle but every graph formed by removing a single vertex from G is Hamiltonian.

<span class="mw-page-title-main">Ladder graph</span> Planar, undirected graph with 2n vertices and 3n-2 edges

In the mathematical field of graph theory, the ladder graphLn is a planar, undirected graph with 2n vertices and 3n – 2 edges.

<span class="mw-page-title-main">Tietze's graph</span> Undirected cubic graph with 12 vertices and 18 edges

In the mathematical field of graph theory, Tietze's graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze, who showed in 1910 that the Möbius strip can be subdivided into six regions that all touch each other – three along the boundary of the strip and three along its center line – and therefore that graphs that are embedded onto the Möbius strip may require six colors. The boundary segments of the regions of Tietze's subdivision form an embedding of Tietze's graph.

<span class="mw-page-title-main">Blanuša snarks</span> Two 3-regular graphs with 18 vertices and 27 edges

In the mathematical field of graph theory, the Blanuša snarks are two 3-regular graphs with 18 vertices and 27 edges. They were discovered by Yugoslavian mathematician Danilo Blanuša in 1946 and are named after him. When discovered, only one snark was known—the Petersen graph.

<span class="mw-page-title-main">Watkins snark</span> Snark with 50 vertices and 75 edges

In the mathematical field of graph theory, the Watkins snark is a snark with 50 vertices and 75 edges. It was discovered by John J. Watkins in 1989.

<span class="mw-page-title-main">Double-star snark</span>

In the mathematical field of graph theory, the double-star snark is a snark with 30 vertices and 45 edges.

<span class="mw-page-title-main">Friendship graph</span> Graph of triangles with a shared vertex

In the mathematical field of graph theory, the friendship graphFn is a planar, undirected graph with 2n + 1 vertices and 3n edges.

In the mathematical field of graph theory, a prism graph is a graph that has one of the prisms as its skeleton.

References

  1. Isaacs, R. (1975). "Infinite Families of Nontrivial Trivalent Graphs Which Are Not Tait Colorable". Amer. Math. Monthly. 82: 221–239. doi:10.1080/00029890.1975.11993805. JSTOR   2319844.
  2. Wolz, Jessica; Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  3. Weisstein, Eric W. "Flower Snark". MathWorld .
  4. Weisstein, Eric W. "Hypohamiltonian Graph". MathWorld .
  5. Clark, L.; Entringer, R. (1983), "Smallest maximally nonhamiltonian graphs", Periodica Mathematica Hungarica, 14 (1): 57–68, doi:10.1007/BF02023582 .