Fog fever

Last updated

Fog fever is a refeeding syndrome in cattle, clinically named acute bovine pulmonary emphysema and edema (ABPEE) and bovine atypical interstitial pneumonia. [1] [2] This veterinary disease in adult cattle follows an abrupt move from feedlot (dried feed indoors) to 'foggage pasture' (fast growing, lush pasture, with high protein levels). Clinical signs begin within 1 to 14 days and death may follow within 2 to 4 days. The condition can affect up to 50% of the herd, and around 30% of affected cattle may die as a result. This metabolic nutritional-respiratory disturbance has also been reported in other ruminants (red deer) [3] and on a wide variety of grasses, alfalfa, rape, kale, and turnip tops.

Contents

Clinical signs

The bovine experiences difficulty breathing and will do everything it can to ease this discomfort. It will try to stand with its airway as straight and extended as possible, raising its head and stretching its neck forwards. Breathing rate will increase as high as 80 breaths per minute. there may also be extension of the tongue, and drooling. The animal may grunt as it breathes and froth may form around the mouth as the condition progresses. Rectal temperature will be normal, although some may show an elevated temperature from respiratory effort. [4]

Cause

'Fog fever' results from feedlot economics and the biochemistry of the cattle stomach (rumen) being slow to adjust to green grazing. After a low-protein, dried formulation, cattle are less prepared for a sudden, large exposure to high-protein grass. The level of L-tryptophan in crops is most likely to be high in lush, rapidly growing pastures, particularly (but not exclusively) in the fall. The change in diet to vegetation rich in L-tryptophan causes a corresponding increase of the amino acid typically found in protein in the rumen. Lactobacillus bacteria in the rumen degrade L-tryptophan to indoleacetic acid; bacteria in the rumen convert this to 3-methylindole (3MI) (skatole), which is readily absorbed through the rumen wall into the portal circulation. (3-methylindole is produced exclusively from indoleacetic acid and not directly from L-tryptophan.) Club cells in the terminal bronchioles convert the 3-methylindole to 3-methyleneindolenine, which is toxic to the adjacent alveolar epithelial cells. This toxicity leads to emphysema and pulmonary edema which may cause death by asphyxiation. [5] [6] [7] [8]

In the history of research into this causative pathway, the roles of L-tryptophan and indoleacetic acid to 3-methylindole were identified as early as 1967 and 1972. [9] [10]

Treatment

There is little that can be done for affected cattle. They should be moved from the pasture only on the advice of a veterinarian, since the stress of movement can be deadly even in less severely affected cattle. Mild cases may recover quickly, but full recovery may require a few weeks. [1] [11]

Prevention

Ideally pastures should be used before they become overly lush and protein-rich. If this is not possible, the new diet should be introduced slowly by grazing the cattle just a few hours each day and increasing gradually, over a period of a fortnight. Cutting the pasture immediately before putting the cattle out may help. Drugs are available (monensin or lasalocid) which change the rumen biochemistry in preparation for high tryptophan levels, inhibiting the bacteria that convert L-tryptophan to 3-methylindole. Care must be taken to keep these products away from horses, for which, since horses have no rumen, they are toxic. [12]

Related Research Articles

<span class="mw-page-title-main">Pulmonary alveolus</span> Hollow cavity found in the lungs

A pulmonary alveolus, also known as an air sac or air space, is one of millions of hollow, distensible cup-shaped cavities in the lungs where pulmonary gas exchange takes place. Oxygen is exchanged for carbon dioxide at the blood–air barrier between the alveolar air and the pulmonary capillary. Alveoli make up the functional tissue of the mammalian lungs known as the lung parenchyma, which takes up 90 percent of the total lung volume.

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered mental status due to ischemia in the brain.

<span class="mw-page-title-main">Shortness of breath</span> Feeling of difficulty breathing

Shortness of breath (SOB), also medically known as dyspnea or dyspnoea, is an uncomfortable feeling of not being able to breathe well enough. The American Thoracic Society defines it as "a subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity", and recommends evaluating dyspnea by assessing the intensity of its distinct sensations, the degree of distress and discomfort involved, and its burden or impact on the patient's activities of daily living. Distinct sensations include effort/work to breathe, chest tightness or pain, and "air hunger". The tripod position is often assumed to be a sign.

Crackles are the clicking, rattling, or crackling noises that may be made by one or both lungs of a human with a respiratory disease during inhalation, and occasionally during exhalation. They are usually heard only with a stethoscope. Pulmonary crackles are abnormal breath sounds that were formerly referred to as rales.

Skatole or 3-methylindole is an organic compound belonging to the indole family. It occurs naturally in the feces of mammals and birds and is the primary contributor to fecal odor. In low concentrations, it has a flowery smell and is found in several flowers and essential oils, including those of orange blossoms, jasmine, and Ziziphus mauritiana. It has also been identified in certain cannabis varieties.

<span class="mw-page-title-main">Cattle feeding</span> Description of husbandry practice

There are different systems of feeding cattle in animal husbandry. For pastured animals, grass is usually the forage that composes the majority of their diet. In turn, this grass-fed approach is known for producing meat with distinct flavor profiles. Cattle reared in feedlots are fed hay supplemented with grain, soy and other ingredients to increase the energy density of the feed. The debate is whether cattle should be raised on fodder primarily composed of grass or a concentrate. The issue is complicated by the political interests and confusion between labels such as "free range", "organic", or "natural". Cattle raised on a primarily foraged diet are termed grass-fed or pasture-raised; for example meat or milk may be called grass-fed beef or pasture-raised dairy. The term "pasture-raised" can lead to confusion with the term "free range", which does not describe exactly what the animals eat.

<span class="mw-page-title-main">Interstitial lung disease</span> Group of diseases

Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of respiratory diseases affecting the interstitium and space around the alveoli of the lungs. It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, and perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage, but in interstitial lung disease, the repair process is disrupted, and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The disease presents itself with the following symptoms: shortness of breath, nonproductive coughing, fatigue, and weight loss, which tend to develop slowly, over several months. The average rate of survival for someone with this disease is between three and five years. The term ILD is used to distinguish these diseases from obstructive airways diseases.

<span class="mw-page-title-main">Pneumonitis</span> General inflammation of lung tissue

Pneumonitis describes general inflammation of lung tissue. Possible causative agents include radiation therapy of the chest, exposure to medications used during chemo-therapy, the inhalation of debris, aspiration, herbicides or fluorocarbons and some systemic diseases. If unresolved, continued inflammation can result in irreparable damage such as pulmonary fibrosis.

<span class="mw-page-title-main">Acute interstitial pneumonitis</span> Medical condition

Acute interstitial pneumonitis is a rare, severe lung disease that usually affects otherwise healthy individuals. There is no known cause or cure.

<span class="mw-page-title-main">Alveolar lung disease</span> Medical condition

Alveolar lung diseases, are a group of diseases that mainly affect the alveoli of the lungs.

<span class="mw-page-title-main">Idiopathic pulmonary fibrosis</span> Medical condition

Idiopathic pulmonary fibrosis (IPF), or (formerly) fibrosing alveolitis, is a rare, progressive illness of the respiratory system, characterized by the thickening and stiffening of lung tissue, associated with the formation of scar tissue. It is a type of chronic scarring lung disease characterized by a progressive and irreversible decline in lung function. The tissue in the lungs becomes thick and stiff, which affects the tissue that surrounds the air sacs in the lungs. Symptoms typically include gradual onset of shortness of breath and a dry cough. Other changes may include feeling tired, and abnormally large and dome shaped finger and toenails. Complications may include pulmonary hypertension, heart failure, pneumonia or pulmonary embolism.

<span class="mw-page-title-main">Usual interstitial pneumonia</span> Medical condition

Usual interstitial pneumonia (UIP) is a form of lung disease characterized by progressive scarring of both lungs. The scarring (fibrosis) involves the pulmonary interstitium. UIP is thus classified as a form of interstitial lung disease.

<span class="mw-page-title-main">Diffuse alveolar damage</span> Medical condition

Diffuse alveolar damage (DAD) is a histologic term used to describe specific changes that occur to the structure of the lungs during injury or disease. Most often DAD is described in association with the early stages of acute respiratory distress syndrome (ARDS). It is important to note that DAD can be seen in situations other than ARDS (such as acute interstitial pneumonia) and that ARDS can occur without DAD.

<span class="mw-page-title-main">Classification of pneumonia</span> Medical condition

Pneumonia can be classified in several ways, most commonly by where it was acquired, but may also by the area of lung affected or by the causative organism. There is also a combined clinical classification, which combines factors such as age, risk factors for certain microorganisms, the presence of underlying lung disease or systemic disease and whether the person has recently been hospitalized.

Bovine coronavirus is a coronavirus which is a member of the species Betacoronavirus 1. The infecting virus is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the N-acetyl-9-O-acetylneuraminic acid recepter. Infection causes calf enteritis and contributes to the enzootic pneumonia complex in calves. It can also cause winter dysentery in adult cattle. It can infect both domestic and wild ruminants and has a worldwide distribution. Transmission is horizontal, via oro-fecal or respiratory routes. Like other coronaviruses from genus Betacoronavirus, subgenus Embecovirus, it has a surface protein called hemagglutinin esterase (HE) in addition to the four structural proteins shared by all coronaviruses.

<span class="mw-page-title-main">Ground-glass opacity</span> Radiologic sign on radiographs and computed tomography scans

Ground-glass opacity (GGO) is a finding seen on chest x-ray (radiograph) or computed tomography (CT) imaging of the lungs. It is typically defined as an area of hazy opacification (x-ray) or increased attenuation (CT) due to air displacement by fluid, airway collapse, fibrosis, or a neoplastic process. When a substance other than air fills an area of the lung it increases that area's density. On both x-ray and CT, this appears more grey or hazy as opposed to the normally dark-appearing lungs. Although it can sometimes be seen in normal lungs, common pathologic causes include infections, interstitial lung disease, and pulmonary edema.

Bovine respiratory disease (BRD) is the most common and costly disease affecting beef cattle in the world. It is a complex, bacterial or viral infection that causes pneumonia in calves which can be fatal. The infection is usually a sum of three codependent factors: stress, an underlying viral infection, and a new bacterial infection. The diagnosis of the disease is complex since there are multiple possible causes.

Mycoplasma bovis is one of 126 species of genus Mycoplasma. It is the smallest living cell and anaerobic organism in nature. It does not contain any cell wall and is therefore resistant to penicillin and other beta lactam antibiotics.

Indoleacetate decarboxylase (IAD) is a glycyl radical enzyme that catalyses the decarboxylation of indoleacetate to form skatole, which is a malodorous organic compound that gives animal faeces their characteristic smell. This decarboxylation is the last step of the tryptophan fermentation in some types of anaerobic bacteria.

References

  1. 1 2 Campbell, John (2006). "Acute Bovine Pulmonary Emphysema and Edema". MSD Merck Veterinary Manual.
  2. "MeSH: Pneumonia, Atypical Interstitial, of Cattle". ncbi.nlm.nih.gov/mesh (Medical Subject Headings).
  3. Mawhinney I, Woodger N, Knudsen S (2010). "Atypical interstitial pneumonia in grazing adult red deer (Cervus elaphus)". Journal of Comparative Pathology. 143 (2–3): 209–12. doi:10.1016/j.jcpa.2010.01.010. PMID   20153869.
  4. "Acute bovine pulmonary edema and emphysema" (PDF). Rarnirez RR, Guadiana GS, Nevárez GAM, Trigo TFJ (in Spanish). 1993. Retrieved 23 September 2010..
  5. Doster AR (2010). "Bovine atypical interstitial pneumonia". Vet. Clin. North Am. Food Anim. Pract. 26 (2): 395–407. doi:10.1016/j.cvfa.2010.03.002. PMID   20619192.
  6. Johnson B (1991). "Nutritional and dietary interrelationships with diseases of feedlot cattle". Vet. Clin. North Am. Food Anim. Pract. 7 (1): 133–42. doi:10.1016/S0749-0720(15)30814-8. PMID   2049665.
  7. Kerr LA, Linnabary RD (1989). "A review of interstitial pneumonia in cattle". Vet Hum Toxicol. 31 (3): 247–54. PMID   2662572.
  8. "Acute Bovine Pulmonary Edema and Emphysema in Beef Cattle: Causes and Prevention" (PDF). Dale C. Honeyfield, Department of Animal Sciences, Washington State University. James R. Carlson, Department of Animal Sciences, Washington State University. Retrieved 23 September 2010.
  9. Dickinson EO, Spencer GR, Gorham JR (1967). "Experimental induction of an acute respiratory syndrome in cattle resembling bovine pulmonary emphysema". The Veterinary Record. 80 (16): 487–9. doi:10.1136/vr.80.16.487. PMID   6034273. S2CID   39703447.
  10. Carlson JR, Yokoyama MT, Dickinson EO (1972). "Induction of pulmonary edema and emphysema in cattle and goats with 3-methylindole". Science. 176 (4032): 298–9. doi:10.1126/science.176.4032.298. PMID   5019784. S2CID   21623169.
  11. "Fog Fever". The Cattle Site.
  12. "Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema". AC Hammond, Carlson, JR, and RG Breeze. 14 July 1978. Retrieved 29 September 2010.