Folate receptor 1

Last updated
FOLR1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FOLR1 , FBP, FOLR, Folate receptor 1, folate receptor 1 (adult), folate receptor alpha, FRalpha, NCFTD
External IDs OMIM: 136430 MGI: 95568 HomoloGene: 7322 GeneCards: FOLR1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016730
NM_000802
NM_016724
NM_016725
NM_016729

NM_001252552
NM_001252553
NM_001252554
NM_008034

RefSeq (protein)

NP_000793
NP_057936
NP_057937
NP_057941

NP_001239481
NP_001239482
NP_001239483
NP_032060

Location (UCSC) Chr 11: 72.19 – 72.2 Mb Chr 7: 101.51 – 101.52 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Folate receptor 1 (Folate receptor alpha, FOLR1) is a protein that in humans is encoded by the FOLR1 gene. [5] [6]

Contents

The protein encoded by this gene is a member of the folate receptor (FOLR) family. Members of this family have a high affinity for folic acid and for several reduced folic acid derivatives, and mediate delivery of 5-methyltetrahydrofolate to the interior of cells.

Functions

This receptor is responsible for binding to folic acid and its derivatives, which becomes crucial during fetal development. By adding folate supplementation during pregnancy, neural tube defects in the fetus are prevented. Folate derivatives are necessary for important metabolic processes such as DNA, protein and lipid methylation. More importantly, folate plays a major role in DNA replication and cell division, which are common characteristics of rapid growth. Even though it is unclear how folate affects neural tube formation, scientists are certain that without appropriate folate levels, neural tube defects can develop through human and mice studies. Neural tube defects refer to the improper development of the neural tube by not being sealed correctly. This results in exencephaly or spina bifida, both nervous system abnormalities. [7]

This gene is composed of 7 exons; exons 1 through 4 encode the 5' UTR and exons 4 through 7 encode the open reading frame. Due to the presence of 2 promoters, multiple transcription start sites, and alternative splicing of exons, several transcript variants are derived from this gene. These variants differ in the lengths of 5' and 3' UTR, but they encode an identical amino acid sequence. [6]

Clinical significance

Schematic model of FRa used as a target in cancer therapy. Schematic model of FRa used as a target in cancer therapy.jpg
Schematic model of FRα used as a target in cancer therapy.

FRα, due to its high expression in some tumors, is an attractive therapeutic target for the development of novel anti-cancer agents in order to limit toxic side-effects on off-target tissues. [8]

FRa can be overexpressed by a number of epithelial-derived tumors including ovarian, breast, renal, lung, colorectal, and brain. According to a review published in 2020, elevated expression of FRa was noted in mesotheliomas (72-100% of cases), triple-negative breast cancer (35-68% of cases) and epithelial ovarian cancer (76-89% of cases). [9]

Therefore, antibodies to FRa are being developed for use in targeted therapies, with one example being farletuzumab, in a phase III trial for ovarian cancer. Further, FRa-binding markers have been created in an attempt to visualise FRa-expressing tumors. In 2021, the fluorescent marker pafolacianine was approved for identification of malignant lesions during surgeries.

Autoantibodies to the FRA have been linked to neurodevelopmental diseases, [10] particularly cerebral folate deficiency [11] schizophrenia [11] and autism spectrum disorder. [12] Recent studies have shown that these neurodevelopmental disorders can be treated with folinic acid. [12] [13]

Figures

Crystallographic structure of FRa protein. The folate is in green, the folate binding site is colored in orange. A Cys66Tyr substitution position induced by a pathogenic variant is represented in red while the disulfide bond between Cys66 and Cys109 is in dark blue. Figure from Mafi et al., 2020 Brainsci-10-00762-g004-550.png
Crystallographic structure of FRα protein. The folate is in green, the folate binding site is colored in orange. A Cys66Tyr substitution position induced by a pathogenic variant is represented in red while the disulfide bond between Cys66 and Cys109 is in dark blue. Figure from Mafi et al., 2020
Identification of ovarian cancer metastases located on the intestine and mesentery using fluorescence imaging of the folate receptor alpha-binding marker EC17. From Tummers et al., 2016. Identification of ovarian cancer metastases using fluorescence imaging of folate receptor alpha.jpg
Identification of ovarian cancer metastases located on the intestine and mesentery using fluorescence imaging of the folate receptor alpha-binding marker EC17. From Tummers et al., 2016.

See also

Related Research Articles

<span class="mw-page-title-main">Alternative splicing</span> Process by which a gene can code for multiple proteins

Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be included within or excluded from the final, processed messenger RNA (mRNA) produced from that gene. This means the exons are joined in different combinations, leading to different (alternative) mRNA strands. Consequently, the proteins translated from alternatively spliced mRNAs usually contain differences in their amino acid sequence and, often, in their biological functions.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

<span class="mw-page-title-main">L1 (protein)</span> Mammalian protein found in Homo sapiens

L1, also known as L1CAM, is a transmembrane protein member of the L1 protein family, encoded by the L1CAM gene. This protein, of 200-220 kDa, is a neuronal cell adhesion molecule with a strong implication in cell migration, adhesion, neurite outgrowth, myelination and neuronal differentiation. It also plays a key role in treatment-resistant cancers due to its function. It was first identified in 1984 by M. Schachner who found the protein in post-mitotic mice neurons.

<span class="mw-page-title-main">PAX3</span> Paired box gene 3

The PAX3 gene encodes a member of the paired box or PAX family of transcription factors. The PAX family consists of nine human (PAX1-PAX9) and nine mouse (Pax1-Pax9) members arranged into four subfamilies. Human PAX3 and mouse Pax3 are present in a subfamily along with the highly homologous human PAX7 and mouse Pax7 genes. The human PAX3 gene is located in the 2q36.1 chromosomal region, and contains 10 exons within a 100 kb region.

<span class="mw-page-title-main">Nuclear receptor 4A1</span> Mammalian protein found in Homo sapiens

The nuclear receptor 4A1 also known as Nur77, TR3, and NGFI-B is a protein that in humans is encoded by the NR4A1 gene.

<span class="mw-page-title-main">Retinoic acid receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor alpha (RAR-α), also known as NR1B1 is a nuclear receptor that in humans is encoded by the RARA gene.

<span class="mw-page-title-main">LPAR3</span> Protein-coding gene in the species Homo sapiens

Lysophosphatidic acid receptor 3 also known as LPA3 is a protein that in humans is encoded by the LPAR3 gene. LPA3 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).

<span class="mw-page-title-main">Collagen, type IV, alpha 3</span> Protein found in humans

Collagen alpha-3(IV) chain is a protein that in humans is encoded by the COL4A3 gene.

<span class="mw-page-title-main">GATA3</span> Protein-coding gene in the species Homo sapiens

GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.

<span class="mw-page-title-main">USF1</span> Protein-coding gene in the species Homo sapiens

Upstream stimulatory factor 1 is a protein that in humans is encoded by the USF1 gene.

<span class="mw-page-title-main">CUTL1</span> Protein-coding gene in the species Homo sapiens

Cux1 is a homeodomain protein that in humans is encoded by the CUX1 gene.

<span class="mw-page-title-main">RBP1</span> Protein-coding gene in the species Homo sapiens

Retinol binding protein 1, cellular, also known as RBP1, is a protein that in humans is encoded by the RBP1 gene.

<span class="mw-page-title-main">CRABP1</span> Protein-coding gene in the species Homo sapiens

Cellular retinoic acid-binding protein 1 is a protein that in humans is encoded by the CRABP1 gene.

<span class="mw-page-title-main">FOLR2</span> Protein-coding gene in the species Homo sapiens

Folate receptor beta is a protein that in humans is encoded by the FOLR2 gene.

<span class="mw-page-title-main">OPCML</span> Protein-coding gene in the species Homo sapiens

Opioid-binding protein/cell adhesion molecule is a protein that in humans is encoded by the OPCML gene.

Folate targeting is a method utilized in biotechnology for drug delivery purposes. This Trojan Horse process, which was created by Drs. Christopher P. Leamon and Philip S. Low, involves the attachment of the vitamin, folate, to a molecule/drug to form a "folate conjugate". Based on the natural high affinity of folate for the folate receptor protein (FR), which is commonly expressed on the surface of many human cancers, folate-drug conjugates also bind tightly to the FR and trigger cellular uptake via endocytosis. Molecules as diverse as small radiodiagnostic imaging agents to large DNA plasmid formulations have successfully been delivered inside FR-positive cells and tissues.

Membrane progesterone receptors (mPRs) are a group of cell surface receptors and membrane steroid receptors belonging to the progestin and adipoQ receptor (PAQR) family which bind the endogenous progestogen and neurosteroid progesterone, as well as the neurosteroid allopregnanolone. Unlike the progesterone receptor (PR), a nuclear receptor which mediates its effects via genomic mechanisms, mPRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The mPRs mediate important physiological functions in male and female reproductive tracts, liver, neuroendocrine tissues, and the immune system as well as in breast and ovarian cancer.

GT198 is a human oncogene located within the BRCA1 locus at chromosome 17q21. It encodes protein product named GT198, Hop2 or TBPIP. The GT198 gene is found to be mutated with its protein overexpressed in human cancers including breast and ovarian cancers.

<span class="mw-page-title-main">SRARP</span> Protein-coding gene in the species Homo sapiens

Steroid Receptor Associated and Regulated Protein (SRARP) in humans is a protein encoded by a gene of the same name with two exons that is located on chromosome 1p36.13. SRARP contains 169 amino acids and has a molecular weight of 17,657 Da.

<span class="mw-page-title-main">TMEM101</span>

Transmembrane protein 101 (TMEM101) is a protein that in humans is encoded by the TMEM101 gene. The TMEM101 protein has been demonstrated to activate the NF-κB signaling pathway. High levels of expression of TMEM101 have been linked to breast cancer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110195 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000001827 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (October 1991). "Folate-binding protein is a marker for ovarian cancer". Cancer Research. 51 (19): 5329–38. PMID   1717147.
  6. 1 2 "Entrez Gene: FOLR1 folate receptor 1 (adult)".
  7. Balashova OA, Visina O, Borodinsky LN (2017-04-15). "Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation". Development. 144 (8): 1518–1530. doi:10.1242/dev.137315. ISSN   0950-1991. PMC   5399658 . PMID   28255006.
  8. 1 2 Razaghi A, Zickler AM, Spallholz J, Kirsch G, Björnstedt M (June 2021). "Selenofolate inhibits the proliferation of IGROV1 cancer cells independently from folate receptor alpha". Heliyon. 7 (6): e07254. Bibcode:2021Heliy...707254R. doi:10.1016/j.heliyon.2021.e07254. PMC   8209087 . PMID   34169173.
  9. Scaranti M, Cojocaru E, Banerjee S, Banerji U (June 2020). "Exploiting the folate receptor α in oncology". Nature Reviews. Clinical Oncology. 17 (6): 349–359. doi:10.1038/s41571-020-0339-5. PMID   32152484. S2CID   212641989.
  10. Frye RE, Slattery JC, Quadros EV (August 2017). "Folate metabolism abnormalities in autism: potential biomarkers". Biomarkers in Medicine. 11 (8): 687–699. doi: 10.2217/bmm-2017-0109 . PMID   28770615.
  11. 1 2 Ramaekers VT, Rothenberg SP, Sequeira JM, Opladen T, Blau N, Quadros EV, Selhub J (May 2005). "Autoantibodies to folate receptors in the cerebral folate deficiency syndrome". The New England Journal of Medicine. 352 (19): 1985–91. doi: 10.1056/NEJMoa043160 . PMID   15888699.
  12. 1 2 Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA (March 2013). "Cerebral folate receptor autoantibodies in autism spectrum disorder". Molecular Psychiatry. 18 (3): 369–81. doi:10.1038/mp.2011.175. PMC   3578948 . PMID   22230883.
  13. Frye RE, Slattery J, Delhey L, Furgerson B, Strickland T, Tippett M, et al. (February 2018). "Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial". Molecular Psychiatry. 23 (2): 247–256. doi:10.1038/mp.2016.168. PMC   5794882 . PMID   27752075.
  14. Mafi S, Laroche-Raynaud C, Chazelas P, Lia AS, Derouault P, Sturtz F, Baaj Y, Froget R, Rio M, Benoist JF, Poumeaud F, Favreau F, Faye PA (October 2020). "Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease". Brain Sciences. 10 (11): 762. doi: 10.3390/brainsci10110762 . PMC   7690394 . PMID   33105619.
  15. Tummers QR, Hoogstins CE, Gaarenstroom KN, de Kroon CD, van Poelgeest MI, Vuyk J, Bosse T, Smit VT, van de Velde CJ, Cohen AF, Low PS, Burggraaf J, Vahrmeijer AL (May 2016). "Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17". Oncotarget. 7 (22): 32144–55. doi:10.18632/oncotarget.8282. PMC   5078003 . PMID   27014973.

Further reading