Four exponentials conjecture

Last updated

In mathematics, specifically the field of transcendental number theory, the four exponentials conjecture is a conjecture which, given the right conditions on the exponents, would guarantee the transcendence of at least one of four exponentials. The conjecture, along with two related, stronger conjectures, is at the top of a hierarchy of conjectures and theorems concerning the arithmetic nature of a certain number of values of the exponential function.

Contents

Statement

If x1, x2 and y1, y2 are two pairs of complex numbers, with each pair being linearly independent over the rational numbers, then at least one of the following four numbers is transcendental:

An alternative way of stating the conjecture in terms of logarithms is the following. For 1  i, j  2 let λij be complex numbers such that exp(λij) are all algebraic. Suppose λ11 and λ12 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then

An equivalent formulation in terms of linear algebra is the following. Let M be the 2×2 matrix

where exp(λij) is algebraic for 1  i, j  2. Suppose the two rows of M are linearly independent over the rational numbers, and the two columns of M are linearly independent over the rational numbers. Then the rank of M is 2.

While a 2×2 matrix having linearly independent rows and columns usually means it has rank 2, in this case we require linear independence over a smaller field so the rank isn't forced to be 2. For example, the matrix

has rows and columns that are linearly independent over the rational numbers, since π is irrational. But the rank of the matrix is 1. So in this case the conjecture would imply that at least one of e, eπ, and eπ2 is transcendental (which in this case is already known since e is transcendental).

History

The conjecture was considered in the early 1940s by Atle Selberg who never formally stated the conjecture. [1] A special case of the conjecture is mentioned in a 1944 paper of Leonidas Alaoglu and Paul Erdős who suggest that it had been considered by Carl Ludwig Siegel. [2] An equivalent statement was first mentioned in print by Theodor Schneider who set it as the first of eight important, open problems in transcendental number theory in 1957. [3]

The related six exponentials theorem was first explicitly mentioned in the 1960s by Serge Lang [4] and Kanakanahalli Ramachandra, [5] and both also explicitly conjecture the above result. [6] Indeed, after proving the six exponentials theorem Lang mentions the difficulty in dropping the number of exponents from six to four the proof used for six exponentials "just misses" when one tries to apply it to four.

Corollaries

Using Euler's identity this conjecture implies the transcendence of many numbers involving e and π. For example, taking x1 = 1, x2 = 2, y1 = , and y2 = 2, the conjectureif trueimplies that one of the following four numbers is transcendental:

The first of these is just 1, and the fourth is 1, so the conjecture implies that e2 is transcendental (which is already known, by consequence of the Gelfond–Schneider theorem).

An open problem in number theory settled by the conjecture is the question of whether there exists a non-integer real number t such that both 2t and 3t are integers, or indeed such that at and bt are both integers for some pair of integers a and b that are multiplicatively independent over the integers. Values of t such that 2t is an integer are all of the form t = log2m for some integer m, while for 3t to be an integer, t must be of the form t = log3n for some integer n. By setting x1 = 1, x2 = t, y1 = log(2), and y2 = log(3), the four exponentials conjecture implies that if t is irrational then one of the following four numbers is transcendental:

So if 2t and 3t are both integers then the conjecture implies that t must be a rational number. Since the only rational numbers t for which 2t is also rational are the integers, this implies that there are no non-integer real numbers t such that both 2t and 3t are integers. It is this consequence, for any two primes (not just 2 and 3), that Alaoglu and Erdős desired in their paper as it would imply the conjecture that the quotient of two consecutive colossally abundant numbers is prime, extending Ramanujan's results on the quotients of consecutive superior highly composite number. [7]

Sharp four exponentials conjecture

The four exponentials conjecture reduces the pair and triplet of complex numbers in the hypotheses of the six exponentials theorem to two pairs. It is conjectured that this is also possible with the sharp six exponentials theorem, and this is the sharp four exponentials conjecture. [8] Specifically, this conjecture claims that if x1, x2, and y1, y2 are two pairs of complex numbers with each pair being linearly independent over the rational numbers, and if βij are four algebraic numbers for 1  i, j  2 such that the following four numbers are algebraic:

then xi yj = βij for 1  i, j  2. So all four exponentials are in fact 1.

This conjecture implies both the sharp six exponentials theorem, which requires a third x value, and the as yet unproven sharp five exponentials conjecture that requires a further exponential to be algebraic in its hypotheses.

Strong four exponentials conjecture

The logical implications between the various problems in this circle. Those in red are as yet unproven while those in blue are known results. The top most result refers to that discussed at Baker's theorem, while the lower two rows are detailed at the six exponentials theorem article. N-Exponentials Conjecture.png
The logical implications between the various problems in this circle. Those in red are as yet unproven while those in blue are known results. The top most result refers to that discussed at Baker's theorem, while the lower two rows are detailed at the six exponentials theorem article.

The strongest result that has been conjectured in this circle of problems is the strong four exponentials conjecture. [9] This result would imply both aforementioned conjectures concerning four exponentials as well as all the five and six exponentials conjectures and theorems, as illustrated to the right, and all the three exponentials conjectures detailed below. The statement of this conjecture deals with the vector space over the algebraic numbers generated by 1 and all logarithms of non-zero algebraic numbers, denoted here as L. So L is the set of all complex numbers of the form

for some n  0, where all the βi and αi are algebraic and every branch of the logarithm is considered. The statement of the strong four exponentials conjecture is then as follows. Let x1, x2, and y1, y2 be two pairs of complex numbers with each pair being linearly independent over the algebraic numbers, then at least one of the four numbers xi yj for 1  i, j  2 is not in L.

Three exponentials conjecture

The four exponentials conjecture rules out a special case of non-trivial, homogeneous, quadratic relations between logarithms of algebraic numbers. But a conjectural extension of Baker's theorem implies that there should be no non-trivial algebraic relations between logarithms of algebraic numbers at all, homogeneous or not. One case of non-homogeneous quadratic relations is covered by the still open three exponentials conjecture. [10] In its logarithmic form it is the following conjecture. Let λ1, λ2, and λ3 be any three logarithms of algebraic numbers and γ be a non-zero algebraic number, and suppose that λ1λ2 = γλ3. Then λ1λ2 = γλ3 = 0.

The exponential form of this conjecture is the following. Let x1, x2, and y be non-zero complex numbers and let γ be a non-zero algebraic number. Then at least one of the following three numbers is transcendental:

There is also a sharp three exponentials conjecture which claims that if x1, x2, and y are non-zero complex numbers and α, β1, β2, and γ are algebraic numbers such that the following three numbers are algebraic

then either x2y = β2 or γx1 = αx2.

The strong three exponentials conjecture meanwhile states that if x1, x2, and y are non-zero complex numbers with x1y, x2y, and x1/x2 all transcendental, then at least one of the three numbers x1y, x2y, x1/x2 is not in L.

As with the other results in this family, the strong three exponentials conjecture implies the sharp three exponentials conjecture which implies the three exponentials conjecture. However, the strong and sharp three exponentials conjectures are implied by their four exponentials counterparts, bucking the usual trend. And the three exponentials conjecture is neither implied by nor implies the four exponentials conjecture.

The three exponentials conjecture, like the sharp five exponentials conjecture, would imply the transcendence of eπ2 by letting (in the logarithmic version) λ1 = iπ, λ2 = iπ, and γ = 1.

Bertrand's conjecture

Many of the theorems and results in transcendental number theory concerning the exponential function have analogues involving the modular function j. Writing q = eiτ for the nome and j(τ) = J(q), Daniel Bertrand conjectured that if q1 and q2 are non-zero algebraic numbers in the complex unit disc that are multiplicatively independent, then J(q1) and J(q2) are algebraically independent over the rational numbers. [11] Although not obviously related to the four exponentials conjecture, Bertrand's conjecture in fact implies a special case known as the weak four exponentials conjecture. [12] This conjecture states that if x1 and x2 are two positive real algebraic numbers, neither of them equal to 1, then π2 and the product log(x1)log(x2) are linearly independent over the rational numbers. This corresponds to the special case of the four exponentials conjecture whereby y1 = iπ, y2 = iπ, and x1 and x2 are real. Perhaps surprisingly, though, it is also a corollary of Bertrand's conjecture, suggesting there may be an approach to the full four exponentials conjecture via the modular function j.

Notes

  1. Waldschmidt, (2006).
  2. Alaoglu and Erdős, (1944), p.455: "It is very likely that qx and px cannot be rational at the same time except if x is an integer. ... At present we can not show this. Professor Siegel has communicated to us the result that qx, rx and sx can not be simultaneously rational except if x is an integer."
  3. Schneider, (1957).
  4. Lang, (1966), chapter 2 section 1.
  5. Ramachandra, (1967/8).
  6. Waldschmidt, (2000), p.15.
  7. Ramanujan, (1915), section IV.
  8. Waldschmidt, "Hopf algebras..." (2005), p.200.
  9. Waldschmidt, (2000), conjecture 11.17.
  10. Waldschmidt, "Variations..." (2005), consequence 1.9.
  11. Bertrand, (1997), conjecture 2 in section 5.
  12. Diaz, (2001), section 4.

Related Research Articles

<span class="mw-page-title-main">Algebraic number</span> Complex number that is a root of a non-zero polynomial in one variable with rational coefficients

An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer coefficients. For example, the golden ratio, , is an algebraic number, because it is a root of the polynomial x2x − 1. That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number is algebraic because it is a root of x4 + 4.

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Quasigroup</span> Magma obeying the Latin square property

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure resembling a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional.

In mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best-known transcendental numbers are π and e.

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

In mathematics, a Diophantine equation is an equation of the form P(x1, ..., xj, y1, ..., yk) = 0 (usually abbreviated P(x, y) = 0) where P(x, y) is a polynomial with integer coefficients, where x1, ..., xj indicate parameters and y1, ..., yk indicate unknowns.

In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal unit vectors. A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.

<span class="mw-page-title-main">Diophantine approximation</span> Rational-number approximation of a real number

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically using a finite amount of terms.

<span class="mw-page-title-main">Lindemann–Weierstrass theorem</span> On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following:

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.

<span class="mw-page-title-main">Schanuel's conjecture</span> Conjecture on the transcendence degree of field extensions to the rational numbers

In mathematics, specifically transcendental number theory, Schanuel's conjecture is a conjecture made by Stephen Schanuel in the 1960s concerning the transcendence degree of certain field extensions of the rational numbers.

In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. Sums and products of periods remain periods, such that the periods form a ring.

In mathematics, E-functions are a type of power series that satisfy particular arithmetic conditions on the coefficients. They are of interest in transcendental number theory, and are more special than G-functions.

In mathematics, specifically transcendental number theory, the six exponentials theorem is a result that, given the right conditions on the exponents, guarantees the transcendence of at least one of a set of exponentials.

<span class="mw-page-title-main">Unit circle</span> Circle with radius of one

In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as S1 because it is a one-dimensional unit n-sphere.

In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by Alan Baker, subsumed many earlier results in transcendental number theory and solved a problem posed by Alexander Gelfond nearly fifteen years earlier. Baker used this to prove the transcendence of many numbers, to derive effective bounds for the solutions of some Diophantine equations, and to solve the class number problem of finding all imaginary quadratic fields with class number 1.

References