Six exponentials theorem

Last updated

In mathematics, specifically transcendental number theory, the six exponentials theorem is a result that, given the right conditions on the exponents, guarantees the transcendence of at least one of a set of exponentials.

Contents

Statement

If x1, x2, ..., xd are d complex numbers that are linearly independent over the rational numbers, and y1, y2, ..., yl are l complex numbers that are also linearly independent over the rational numbers, and if dl > d + l, then at least one of the following dl numbers is transcendental:

The most interesting case is when d = 3 and l = 2, in which case there are six exponentials, hence the name of the result. The theorem is weaker than the related but thus far unproved four exponentials conjecture, whereby the strict inequality dl > d + l is replaced with dl  d + l, thus allowing d = l = 2.

The theorem can be stated in terms of logarithms by introducing the set L of logarithms of algebraic numbers:

The theorem then says that if λij are elements of L for i = 1,2 and j = 1,2,3, such that λ11, λ12, and λ13 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then the matrix

has rank 2.

History

A special case of the result where x1, x2, and x3 are logarithms of positive integers, y1 = 1, and y2 is real, was first mentioned in a paper by Leonidas Alaoglu and Paul Erdős from 1944 in which they try to prove that the ratio of consecutive colossally abundant numbers is always prime. They claimed that Carl Ludwig Siegel knew of a proof of this special case, but it is not recorded. [1] Using the special case they manage to prove that the ratio of consecutive colossally abundant numbers is always either a prime or a semiprime.

The theorem was first explicitly stated and proved in its complete form independently by Serge Lang [2] and Kanakanahalli Ramachandra [3] in the 1960s.

Five exponentials theorem

A stronger, related result is the five exponentials theorem, [4] which is as follows. Let x1, x2 and y1, y2 be two pairs of complex numbers, with each pair being linearly independent over the rational numbers, and let γ be a non-zero algebraic number. Then at least one of the following five numbers is transcendental:

This theorem implies the six exponentials theorem and in turn is implied by the as yet unproven four exponentials conjecture, which says that in fact one of the first four numbers on this list must be transcendental.

Sharp six exponentials theorem

Another related result that implies both the six exponentials theorem and the five exponentials theorem is the sharp six exponentials theorem. [5] This theorem is as follows. Let x1, x2, and x3 be complex numbers that are linearly independent over the rational numbers, and let y1 and y2 be a pair of complex numbers that are linearly independent over the rational numbers, and suppose that βij are six algebraic numbers for 1  i  3 and 1  j  2 such that the following six numbers are algebraic:

Then xi yj = βij for 1  i  3 and 1  j  2. The six exponentials theorem then follows by setting βij = 0 for every i and j, while the five exponentials theorem follows by setting x3 = γ/x1 and using Baker's theorem to ensure that the xi are linearly independent.

There is a sharp version of the five exponentials theorem as well, although it as yet unproven so is known as the sharp five exponentials conjecture. [6] This conjecture implies both the sharp six exponentials theorem and the five exponentials theorem, and is stated as follows. Let x1, x2 and y1, y2 be two pairs of complex numbers, with each pair being linearly independent over the rational numbers, and let α, β11, β12, β21, β22, and γ be six algebraic numbers with γ  0 such that the following five numbers are algebraic:

Then xi yj = βij for 1  i, j  2 and γx2 = αx1.

A consequence of this conjecture that isn't currently known would be the transcendence of eπ², by setting x1 = y1 = β11 = 1, x2 = y2 = iπ, and all the other values in the statement to be zero.

Strong six exponentials theorem

The logical implications between the various problems in this circle. Those in red are as yet unproven while those in blue are known results. The top most result refers to that discussed at Baker's theorem, while the four exponentials conjectures are detailed at the four exponentials conjecture article. N-Exponentials Conjecture.png
The logical implications between the various problems in this circle. Those in red are as yet unproven while those in blue are known results. The top most result refers to that discussed at Baker's theorem, while the four exponentials conjectures are detailed at the four exponentials conjecture article.

A further strengthening of the theorems and conjectures in this area are the strong versions. The strong six exponentials theorem is a result proved by Damien Roy that implies the sharp six exponentials theorem. [7] This result concerns the vector space over the algebraic numbers generated by 1 and all logarithms of algebraic numbers, denoted here as L. So L is the set of all complex numbers of the form

for some n  0, where all the βi and αi are algebraic and every branch of the logarithm is considered. The strong six exponentials theorem then says that if x1, x2, and x3 are complex numbers that are linearly independent over the algebraic numbers, and if y1 and y2 are a pair of complex numbers that are also linearly independent over the algebraic numbers then at least one of the six numbers xi yj for 1  i  3 and 1  j  2 is not in L. This is stronger than the standard six exponentials theorem which says that one of these six numbers is not simply the logarithm of an algebraic number.

There is also a strong five exponentials conjecture formulated by Michel Waldschmidt. [8] It would imply both the strong six exponentials theorem and the sharp five exponentials conjecture. This conjecture claims that if x1, x2 and y1, y2 are two pairs of complex numbers, with each pair being linearly independent over the algebraic numbers, then at least one of the following five numbers is not in L:

All the above conjectures and theorems are consequences of the unproven extension of Baker's theorem, that logarithms of algebraic numbers that are linearly independent over the rational numbers are automatically algebraically independent too. The diagram on the right shows the logical implications between all these results.

Generalization to commutative group varieties

The exponential function ez uniformizes the exponential map of the multiplicative group Gm. Therefore, we can reformulate the six exponential theorem more abstractly as follows:

Let G = Gm × Gm and take u : CG(C) to be a non-zero complex-analytic group homomorphism. Define L to be the set of complex numbers l for which u(l) is an algebraic point of G. If a minimal generating set of L over Q has more than two elements then the image u(C) is an algebraic subgroup of G(C).

(In order to derive the classical statement, set u(z) = (ey1z; ey2z) and note that Qx1 + Qx2 + Qx3 is a subset of L).

In this way, the statement of the six exponentials theorem can be generalized to an arbitrary commutative group variety G over the field of algebraic numbers. This generalized six exponential conjecture, however, seems out of scope at the current state of transcendental number theory.

For the special but interesting cases G = Gm × E and G = E × E′, where E, E′ are elliptic curves over the field of algebraic numbers, results towards the generalized six exponential conjecture were proven by Aleksander Momot. [9] These results involve the exponential function ez and a Weierstrass function resp. two Weierstrass functions with algebraic invariants , instead of the two exponential functions in the classical statement.

Let G = Gm × E and suppose E is not isogenous to a curve over a real field and that u(C) is not an algebraic subgroup of G(C). Then L is generated over Q either by two elements x1, x2, or three elements x1, x2, x3 which are not all contained in a real line Rc, where c is a non-zero complex number. A similar result is shown for G = E × E′. [10]

Notes

  1. Alaoglu and Erdős, (1944), p.455: "Professor Siegel has communicated to us the result that q x, r x and s x can not be simultaneously rational except if x is an integer."
  2. Lang, (1966), chapter 2, section 1.
  3. Ramachandra, (1967/68).
  4. Waldschmidt, (1988), corollary 2.2.
  5. Waldschmidt, (2005), theorem 1.4.
  6. Waldschmidt, (2005), conjecture 1.5
  7. Roy, (1992), section 4, corollary 2.
  8. Waldschmidt, (1988).
  9. Momot, ch. 7
  10. Momot, ch. 7

Related Research Articles

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

Elliptic curve Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which, after a linear change of variables, consists of solutions (x,y) for:

In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are π and e.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed in terms of a finite sequence of the algebraic operations of addition, subtraction, multiplication, division, raising to a power, and root extraction.

Lindemann–Weierstrass theorem On algebraic independence of exponentials of linearly independent algebraic numbers over Q

In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following.

Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers.

In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations, and functions, but usually no limit, differentiation, or integration. The set of operations and functions may vary with author and context.

In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers.

In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.

Transcendental number theory Study of numbers that are not solutions of polynomials with rational coefficients

Transcendental number theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.

Semisimple Lie algebra Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

Schanuels conjecture Conjecture on the transcendence degree of field extensions to the rational numbers

In mathematics, specifically transcendental number theory, Schanuel's conjecture is a conjecture made by Stephen Schanuel in the 1960s concerning the transcendence degree of certain field extensions of the rational numbers.

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. The study of logarithms of matrices leads to Lie theory since when a matrix has a logarithm then it is in a Lie group and the logarithm is the corresponding element of the vector space of the Lie algebra.

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. Sums and products of periods remain periods, so the periods form a ring.

In mathematics, E-functions are a type of power series that satisfy particular arithmetic conditions on the coefficients. They are of interest in transcendental number theory, and are more special than G-functions.

In mathematics, specifically the field of transcendental number theory, the four exponentials conjecture is a conjecture which, given the right conditions on the exponents, would guarantee the transcendence of at least one of four exponentials. The conjecture, along with two related, stronger conjectures, is at the top of a hierarchy of conjectures and theorems concerning the arithmetic nature of a certain number of values of the exponential function.

Alan Baker (mathematician) English mathematician

Alan Baker was an English mathematician, known for his work on effective methods in number theory, in particular those arising from transcendental number theory.

In transcendental number theory, a mathematical discipline, Baker's theorem gives a lower bound for the absolute value of linear combinations of logarithms of algebraic numbers. The result, proved by Alan Baker, subsumed many earlier results in transcendental number theory and solved a problem posed by Alexander Gelfond nearly fifteen years earlier. Baker used this to prove the transcendence of many numbers, to derive effective bounds for the solutions of some Diophantine equations, and to solve the class number problem of finding all imaginary quadratic fields with class number 1.

References