Frog test

Last updated

The frog test is a pregnancy testing method relying on frogs to show the pregnancy status of women. [1] Since immunological pregnancy tests were not yet developed before 1960s, women living a century ago relied on urine-based pregnancy tests using different animals, ranging from mice to frogs. [2] [3] Nowadays, the advancement in medical technology has enabled women to accurately check their pregnancy status by using 'pee-on-a-stick' pregnancy test kits at home. Before these accessible and convenient test kits were invented, scientists strived to discover a way in spotting pregnancy-related hormones by a natural, simple test, where animals were often included as clinical tools to facilitate the process. [1] The frog test or frog pregnancy test is one of the past prevalent pregnancy scanning methods.

Contents

Throughout history, there have been different frog tests with the aim of indicating the pregnancy status of women. [4] The most well known frog test is the Hogben test, prevalent from the 1940s to the 1960s, by using the underlying principle of hormones and its subsequent biological response in both sexes of certain frog species. [5] [6] The Galli-Mainini test is another frog test developed based on similar principles. [7]

Widespread export and traffic in African clawed frogs used for these tests is believed to have been the primary cause of the intercontinental spread of chytridiomycosis. [8]

Background

Human chorionic gonadotrophin (hCG) is a hormone that is produced when a woman is pregnant, and this is because the placenta is responsible for its production. [9] It takes approximately 9 days for the fertilized egg to move from the fallopian tubes to the uterus, where it implants itself into the walls of the uterus. [9] Then, the placenta will begin to develop and release hCG into the mother's bloodstream, which can get passed into the urine. It takes around 6 days after the implantation of the fertilized egg, or just after the first menstrual period is missed, to detect hCG levels in the blood. [9] The pee-on-a-stick pregnancy test only detects the presence of hCG, and cannot measure the level of hCG in the blood. Therefore, they can be used as a screening for pregnancy, however the level of hCG can also provide information about the pregnancy. Normally, the hCG level increases and peaks at the first 14 weeks of pregnancy, and no hCG is detected after the delivery of the baby. [9] The amount of hCG can also reflect the pregnancy. Less hCG is released in a single pregnancy. Similarly, more hCG is released if the mother is carrying triplets, than if she is carrying twins. [9] hCG blood tests can also screen for birth defects.

In an individual, hCG should not be present unless they are pregnant. However, hCG can also be produced by germ cell tumours, which are tumours from eggs or sperms. The hCG test can be used to screen for uterus cancer, or a molar pregnancy, which is when there is abnormal placental growth in the uterus. [9] The hCG test can also be done after a miscarriage to ensure that a molar pregnancy is not present. In men, the hCG test can be used to screen for the presence of testicular cancer. [9]

Hogben test

African clawed frog An African Clawed Frog.jpg
African clawed frog

The Hogben test, named after the British zoologist Lancelot Hogben, was one of the most reliable and rapid pregnancy tests from the 1940s to the 1960s. [6] The urine samples were injected into African clawed frogs. The Hogben test uses female frogs, unlike the Galli-Mainini test which uses male frogs.

Hogben's earlier works revolved around pituitary hormones and frogs. One day, Hogben and his team observed that the skin colour of the adult frogs was dependent on their growing environment. The colour ranges from a dark environment which led to black skin colour, to a light environment where light-coloured frogs were found. [10] Hogben hypothesized this being the result of the pituitary gland's presence. Hogben validated his hypothesis by proving that the removal of the pituitary gland would result in the white skin colour of frogs regardless of their growing environment. [10] More significantly, during his study of the frog pituitary gland, he discovered female frogs would ovulate, after the injection of ox pituitary gland extracts into its dorsal lymph sac, which created a basis for his future discovery. [11]

While Hogben was carrying on with his work when he moved to South Africa in 1927, where his research revolved around injecting Xenopus laevis with ox pituitary gland extracts, he accidentally discovered that Xenopus frogs would ovulate within a day if they were injected with pituitary extracts, as they were very sensitive to any hormonal changes. [1] During this period, scientists knew that pregnant women’s urine contained pituitary hormones, and Hogben came to a realization that perhaps the presence of pituitary hormones in pregnant women's urine could also be detected through an ovulating response in these frogs. Upon this unearthing, Hogben and another animal geneticist Francis Albert Eley Crew spent two years developing a way to raise and maintain these frogs in a laboratory setting, which led to a twenty-year boom in Hogben tests, which were claimed to be nearly 100% accurate. [12] In reality, different studies have measured the test's accuracy as 93.1%, [13] 97.99% [14] and 99.93%, [15] respectively.

Testing procedures for the Hogben test

The Hogben test procedure consisted of injecting a sample of women's urine into the skin on the back of the frog, specifically into the dorsal lymph sac. [16] Around 12 hours later, results could be seen. If the woman was pregnant, then the frog would be ovulating, and a small cluster of eggs could be seen at the rear end of the frog. Interestingly, the same could be observed in the male species of Xenopus laevis as well, and they were seen to produce sperm upon injection of a pregnant woman's urine. [17] This mechanism is due to the pituitary hormone human chorionic gonadotropin (hCG), which is present only in a pregnant woman's urine. If the woman is not pregnant, no sperm or egg would be produced from the male or female frog respectively.

Xenopus pregnancy test Images-from-a-1938-article-in-the-British-Medical-Journal-by-Edward-R-Elkan-that-helped.png
Xenopus pregnancy test
Injection of sample urine to the dorsal lymph sac of frog 3299263205 1bd838d7c4 oPregnancyTest.jpg
Injection of sample urine to the dorsal lymph sac of frog

Advantages

Previous pregnancy tests, called A-Z tests or rabbit tests, were troublesome and time-consuming. They consisted of injecting women's urine twice a day, for three days, into mice or rabbits. [18] Then, the mice would have to be killed and scientists would examine if the mice had enlarged ovaries. This ovary growth is due to the hCG. Hogben tests were soon more popular and performed more widely than the A-Z tests because results could be seen in less than a day, and yielded highly accurate results. Moreover, Hogben tests did not involve killing the frogs, so each frog could be reused again, unlike in the A-Z tests where the rodents would have to be killed to examine ovary enlargement. Xenopus laevis were also easier to maintain than rodents, and raising them came at a lower cost. This efficient and reliable Hogben test was used till the development of an even simpler and animal-free pregnancy test in the late 1960s. [12]

Development of applications

The frog test had been a highly dependable pregnancy testing method since the 1930s until the immunological test was presented in the 1960s. [12] Pharmacists would inject the female's early urine sample into the frogs and confirm their pregnancy with the spawning of eggs within 18 hours. However, there was a critical prerequisite for accurately performing the test. Women should wait for a few more days after the mark of their late menstruation. As the test was incredibly helpful and considerably time-effective, many countries started to import Xenopus laevis , which contributed to the spread of this species across Europe, Australia, Asia, North America, and almost everywhere around the globe. [19] The African clawed frog is nearly unaffected by exposure to the Amphibian Chytrid Fungus, which has been linked to dramatic population declines of amphibian species all around the globe. Since the global spread of the fungus coincides with the period of increased trade of the African clawed frog, it has been suggested that the frog may have been the vector of the initial global spread of the fungus. [20]

Today, Hogben's test has become obsolete, however, it has made Xenopus frogs an important model and organism in the scientific community, and the Xenopus species are used to study a wide variety of diseases. Even the tadpoles of the Xenopus species have been incorporated as an organism used in the study of developmental biology, such as in frog-based diagnostic tools of polycystic kidney disease. [12]

Galli-Mainini test

Carlos Galli Mainini (1914–1961), who also specialized in endocrinology, tried to improve on the existing Hogben's test, [21] which took over 12 hours for early screening of pregnancy. After making the observation that male frogs or toads generate spermatozoa after long contact with female frogs, the gonadotropic hormone would be secreted from the females' bodies. [21] He realized the female frogs used in Hogben's test could be replaced by South American male frogs or toads. Women's urine could be injected into the adult male frog's dorsal lymph sac. The gonadotropic hormone in the urine of pregnant women, after injection, would lead to the release of sperms from the frogs. [21]

This new testing method became widely used as it was even more efficient, with only 3 hours of waiting time for the results. He found different species suitable for this experiment, mostly indigenous frogs from Israel, like the European green toad, marsh frog, and European tree frog. [22]

Comparison between different animal-based pregnancy tests
A-Z test [18] Rabbit Test/ Friedman test Hogben testGalli-Mainini test [23]
DeveloperGerman gynecologists Selmar Aschheim and Bernhard Zondek Maurice Friedman and Maxwell Edward Lapham Lancelot Thomas Hogben Galli Mainini
Year of discovery1927193119301947
Mechanism of actionidentify hCG presence in pregnant women urine
ProcedureInject woman urine into immature female mice Inject women urine to rabbits intravenouslyInject the female's early urine sample into the dorsal sac of frogs
Indication of positive test resultUpon dissection of mice, enlargement of ovaries and follicular maturation could be observedUpon dissection of rabbits, enlargement of ovaries and follicularmaturation could be observedA cluster of millimeter-sized, black-and-white spheres, which were eggs, ejected from frogsEjection of the spermatozoa of male toads
Animal usedMiceRabbit African clawed frog mature toads- male toads (Bufo arenarum Hensel)
Duration of testA few days after injection of urineApproximately 48 hours after injection5–18 hours after injectionAfter the 5th hour of injection
AdvantagesReliable with error rate < 2% [24] ReliableReliable (99.8% accuracy), no frogs being killed, time-effectiveReliable, Rapid Response
DrawbacksKilling of mice, long waiting time for resultsExpensive, multiple rabbits killed if results are inconclusive, long waiting time for resultsWomen have to wait for a few days after the mark of their late menstruation to perform the testNot all species of male toads could be used

Similar to the Hogben test, a small amount of the women's urine would be injected into the dorsal lymph sac of the male frog. Pregnant women contain the hormone human chorionic gonadotrophin in their urine. Therefore the presence of this hormone in the urine injected into the male frog, would cause the frog to release sperm within three hours. [21] The sperm cells can be seen under a microscope. This procedure is painless for the frog, and the frog can be reused for another test after 2 weeks. [21]

After the suggestions of male frog species for pregnancy tests, researchers had been working on the validation of the accuracy of the test, by ruling out other possible sources that led to the presence of mature living spermatozoa in male frogs' urine. It was found that dry northern leopard frogs would be especially sensitive to distilled water and less sensitive to the gonadotropic hormone. Some further methods to improve accuracy were also suggested. [25]

Related Research Articles

<span class="mw-page-title-main">African clawed frog</span> Species of amphibian

The African clawed frog, also known as simply Xenopus, African clawed toad, African claw-toed frog or the Platanna) is a species of African aquatic frog of the family Pipidae. Its name is derived from the short black claws on its feet. The word Xenopus means 'strange foot' and laevis means 'smooth'.

<span class="mw-page-title-main">Ovulation</span> Release of egg cells from the ovaries

Ovulation is the release of eggs from the ovaries. In women, this event occurs when the ovarian follicles rupture and release the secondary oocyte ovarian cells. After ovulation, during the luteal phase, the egg will be available to be fertilized by sperm. In addition, the uterine lining (endometrium) is thickened to be able to receive a fertilized egg. If no conception occurs, the uterine lining as well as the egg will be shed during menstruation.

<span class="mw-page-title-main">Luteinizing hormone</span> Gonadotropin secreted by the adenohypophysis

Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).

<span class="mw-page-title-main">Human chorionic gonadotropin</span> Hormone

Human chorionic gonadotropin (hCG) is a hormone for the maternal recognition of pregnancy produced by trophoblast cells that are surrounding a growing embryo, which eventually forms the placenta after implantation. The presence of hCG is detected in some pregnancy tests. Some cancerous tumors produce this hormone; therefore, elevated levels measured when the patient is not pregnant may lead to a cancer diagnosis and, if high enough, paraneoplastic syndromes, however, it is not known whether this production is a contributing cause, or an effect of carcinogenesis. The pituitary analog of hCG, known as luteinizing hormone (LH), is produced in the pituitary gland of males and females of all ages.

<span class="mw-page-title-main">Pregnancy test</span> A test based on scientific data to determine if a female is pregnant

A pregnancy test is used to determine whether a female is pregnant or not. The two primary methods are testing for the female pregnancy hormone in blood or urine using a pregnancy test kit, and scanning with ultrasonography. Testing blood for hCG results in the earliest detection of pregnancy. Almost all pregnant women will have a positive urine pregnancy test one week after the first day of a missed menstrual period.

eFSH is a follicle-stimulating hormone obtained from equine species, used to stimulate fertility.

Anovulation is when the ovaries do not release an oocyte during a menstrual cycle. Therefore, ovulation does not take place. However, a woman who does not ovulate at each menstrual cycle is not necessarily going through menopause. Chronic anovulation is a common cause of infertility.

Gonadotropins are glycoprotein hormones secreted by gonadotropic cells of the anterior pituitary of vertebrates. This family includes the mammalian hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), the placental/chorionic gonadotropins, human chorionic gonadotropin (hCG) and equine chorionic gonadotropin (eCG), as well as at least two forms of fish gonadotropins. These hormones are central to the complex endocrine system that regulates normal growth, sexual development, and reproductive function. LH and FSH are secreted by the anterior pituitary gland, while hCG and eCG are secreted by the placenta in pregnant humans and mares, respectively. The gonadotropins act on the gonads, controlling gamete and sex hormone production.

The rabbit test, or Friedman test, was an early pregnancy test developed in 1931 by Maurice Friedman and Maxwell Edward Lapham at the University of Pennsylvania.

Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.

<span class="mw-page-title-main">Lancelot Hogben</span> British experimental zoologist and medical statistician (1895-1975)

Lancelot Thomas Hogben FRS FRSE was a British experimental zoologist and medical statistician. He developed the African clawed frog (Xenopus laevis) as a model organism for biological research in his early career, attacked the eugenics movement in the middle of his career, and wrote popular books on science, mathematics and language in his later career.

<span class="mw-page-title-main">Animal testing on frogs</span> Overview article

Frogs have been used in animal tests throughout the history of biomedical science.

Ovulation induction is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the development of ovarian follicles to reverse anovulation or oligoovulation.

Selmar Aschheim was a German gynecologist who was a native resident of Berlin.

Equine chorionic gonadotropin is a gonadotropic hormone produced in the chorion of pregnant mares. Previously referred to as pregnant mare's serum gonadotropin (PMSG), the hormone is commonly used in concert with progestogen to induce ovulation in livestock prior to artificial insemination.

Gonadotropin preparations are drugs that mimic the physiological effects of gonadotropins, used therapeutically mainly as fertility medication for ovarian hyperstimulation and ovulation induction. For example, the so-called menotropins consist of LH and FSH extracted from human urine from menopausal women. There are also recombinant variants.

<span class="mw-page-title-main">Fertility testing</span>

Fertility testing is the process by which fertility is assessed, both generally and also to find the "fertile window" in the menstrual cycle. General health affects fertility, and STI testing is an important related field.

Induction of final maturation of oocytes is a procedure that is usually performed as part of controlled ovarian hyperstimulation to render the oocytes fully developed and thereby resulting in optimal pregnancy chances. It is basically a replacement for the luteinizing hormone (LH) surge whose effects include final maturation in natural menstrual cycles.

<span class="mw-page-title-main">Bertold Wiesner</span> Austrian Jewish physiologist

Bertold Paul Wiesner (1901–1972) was an Austrian-born physiologist noted firstly for coining the term 'Psi' to denote parapsychological phenomena; secondly for his contribution to research into human fertility and the diagnosis of pregnancy; and thirdly for being the biological father to upwards of 600 offspring by anonymously donating sperm used by his wife the obstetrician Mary Barton to perform artificial insemination on women at her private practice in the Harley Street area of London.

Hillel Abbe Shapiro was a South African forensic pathologist with a range of specialisms in experimental physiology and forensic medicine. He was editor of medical journals, medical text books and a university lecturer.

References

  1. 1 2 3 Haarburger, David; Pillay, Tahir S (2 April 2011). "Historical perspectives in diagnostic clinical pathology: development of the pregnancy test". Journal of Clinical Pathology. 64 (6): 546–548. doi:10.1136/jcp.2011.090332. ISSN   0021-9746. PMID   21460391. S2CID   19203964.
  2. Wide, Leif; Gemzell, Carl A. (1 October 1960). "An Immunological Pregnancy Test". European Journal of Endocrinology. XXXV (II): 261–267. doi:10.1530/acta.0.XXXV0261. ISSN   0804-4643. PMID   13785019.
  3. Hobson, B. M. (15 June 1963). "Immunological Pregnancy Tests". BMJ. 1 (5345): 1606–1607. doi:10.1136/bmj.1.5345.1606-c. ISSN   0959-8138. PMC   2124248 . PMID   13954883.
  4. "The Frog Test". Museum of Contraception and Abortion.
  5. Hogben, Lancelot (21 December 1946). "The Hogben Test". British Medical Journal. 2 (4485): 962–963. doi:10.1136/bmj.2.4485.962-c. PMC   2054960 .
  6. 1 2 Yong, Ed (4 May 2017). "How a Frog Became the First Mainstream Pregnancy Test". The Atlantic.
  7. GALLI-MAININI, CARLOS (11 September 1948). "Pregnancy Test Using the Male Batrachia". Journal of the American Medical Association. 138 (2): 121–125. doi:10.1001/jama.1948.02900020017006. ISSN   0002-9955. PMID   18879287.
  8. Cormier, Zoe. "How a pregnancy test caused a catastrophe for frogs". BBC Earth.
  9. 1 2 3 4 5 6 7 "Human Chorionic Gonadotropin (HCG)". Kaiser Permanente.
  10. 1 2 Kean, Sam. "The Birds, the Bees, and the Froggies". Science History Institute.
  11. Hogben, Lancelot (12 October 1946). "History of the Hogben Test". British Medical Journal. 2 (4475): 554. doi:10.1136/bmj.2.4475.554. PMC   2054472 . PMID   21001524.
  12. 1 2 3 4 Mosher, Dave. "Frogs used to tell women if they were pregnant with nearly 100% reliability". Business Insider.
  13. Garden, N.R.; Miller, H.; Durant, J.A. (24 August 1963). "SEROLOGICAL PREGNANCY TEST USING LATEX PARTICLES AN ASSESSMENT OF ITS RELIABILITY AND CONVENIENCE". British Medical Journal. 2 (5355): 480–483. doi:10.1136/bmj.2.5355.480. PMC   1874016 . PMID   14043712.
  14. Ortho Research Foundation (1961). "Seminar Report" (568–Pi).{{cite journal}}: Cite journal requires |journal= (help)
  15. Hobson, B.M (1966). "Pregnancy Diagnosis". Journal of Reproductive Fertility. 12 (1): 33–48. doi: 10.1530/jrf.0.0120033 . PMID   5330081.
  16. Elkan, E. R. (17 December 1938). "The Xenopus Pregnancy Test". BMJ. 2 (4067): 1253–1274. doi:10.1136/bmj.2.4067.1253. ISSN   0959-8138. PMC   2211252 . PMID   20781969.
  17. Kean, Sam (22 August 2017). "The Birds, the Bees, and the Froggies".
  18. 1 2 Kelley, Kristin (10 May 2012). "The Aschheim-Zondek Test for Pregnancy". Archived from the original on 6 May 2021. Retrieved 19 April 2022.
  19. Kean, Sam (22 August 2017). "The Birds, the Bees, and the Froggies". Science History Institute.
  20. Weldon; du Preez; Hyatt; Muller; and Speare (2004). Origin of the Amphibian Chytrid Fungus. Emerging Infectious Diseases 10(12).
  21. 1 2 3 4 5 "Carlos Galli Mainini (1914–1961)". Museum of Contraception and Abortion.
  22. Rabau, Erwin; Szeinberg, Aryeh (17 July 1958). "THE PRACTICAL VALUE OF THE FROG TEST IN THE DIAGNOSIS OF NORMAL AND PATHOLOGICAL PREGNANCY" (PDF). Journal of Clinical Pathology. 12 (268).
  23. Barbato (2012). "The Pregnancy Diagnosis in Buffalo Species: Laboratory Methods". Journal of Buffalo Science. 1 (2). doi:10.6000/1927-520x.2012.01.02.05. ISSN   1927-520X.
  24. "Aschheim, Selmar (1878–1965)Zondek, Bernhard (1891–1966)", Eponyms and Names in Obstetrics and Gynaecology, Cambridge University Press, pp. 8–9, 31 January 2019, doi:10.1017/9781108421706.008, ISBN   978-1-108-33671-0, S2CID   219958014 , retrieved 17 April 2022
  25. Giltz; Miller. "Ways of improving the male frog test for pregnancy" (PDF). Department of Zoology and Entomology, Ohio State University. L (5).