Fulgide

Last updated
General chemical structure of fulgides in the uncyclized form. In order to cyclize, at least one of the four R groups must be an aryl group. Fulgide.svg
General chemical structure of fulgides in the uncyclized form. In order to cyclize, at least one of the four R groups must be an aryl group.

In organic chemistry, a fulgide is any of a class of photochromic compounds consisting of a bismethylene-succinic anhydride core that has an aromatic group as a substituent. The highly conjugated system is a good chromophore. It can undergo reversible photoisomerization induced by ultraviolet light, converting between the E and Z isomers, both of which are typically colorless compounds. Unlike the more-stable Z isomer, the E isomer can also undergo a photochemically-induced electrocyclic reaction, forming a new ring and becoming a distinctly colored product called the C form. [1] It is thus the two-step ZC isomerization that is the photochromic change starting from the stable uncyclized form.

Contents

Fulgide isomerization.png

History

The first compound of this class was synthesized in 1905, with the name based on the Latin word "fulgere", meaning shiny, for the shiny and large variety of colors of the crystal. The photochromic mechanism of fulgide was reported in 1968. [2] It was not until 1981 that derivatives of fulgide, which made thermally stable photoisomerization, was reported. By editing both non-aromatic substituents and aromatic substituent, fulgide derivatives that are high in thermal stability and photostability were synthesized. [3] [4]

Derivatives

Various other carbonyl structures have been studied, in addition to the original succinic anhydride. The goals includ controlling various chemical properties, photochemical properties, and embedding of this structural motif in more complex molecules.

Fulgimide

General chemical structure of fulgiimdes Fulgimide.svg
General chemical structure of fulgiimdes

Fulgimide is an analog that has succinimide instead of succinic anhydride. It has nearl the same photochromic properties, but the imide is substantially more stable than the carboxylic acid anhydride towards hydrolysis. It also involves a less-complicated synthetic process for attaching substituents onto the structural core. [1] The nitrogen atom provides a point of attachment for chains that can be cross-linked to form polymers. [5]

Fulgenolide

Fulgenolide is a lactone analog: one of the two succinic anhydride carbonyl groups is replaced by an alkyl link. Fulgenolides have a larger quantum yield than other fulgide derivative and has a λmax of the C form in near IR-region. [1]

Fulgenate

Fulgenate is a diester analog. However, fulgenates do not have photochromic characteristics. [1]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation with their odor.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Aromaticity</span> Phenomenon of chemical stability in resonance hybrids of cyclic organic compounds

In chemistry, aromaticity means a molecule has a cyclic (ring-shaped) structure with pi bonds in resonance. Aromatic rings give increased stability compared to saturated compounds having single bonds, and other geometric or connective non-cyclic arrangements with the same set of atoms. Aromatic rings are very stable and do not break apart easily. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have enhanced stability. The term aromaticity with this meaning is historically related to the concept of having an aroma, but is a property distinct from that meaning.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

<span class="mw-page-title-main">Pentalene</span> Chemical compound

Pentalene is a polycyclic hydrocarbon composed of two fused cyclopentadiene rings. It has chemical formula C8H6. It is antiaromatic, because it has 4n π electrons where n is any integer. For this reason it dimerizes even at temperatures as low as −100 °C. The derivative 1,3,5-tri-tert-butylpentalene was synthesized in 1973. Because of the tert-butyl substituents this compound is thermally stable. Pentalenes can also be stabilized by benzannulation for example in the compounds benzopentalene and dibenzopentalene.

<span class="mw-page-title-main">Azobenzene</span> Two phenyl rings linked by a N═N double bond

Azobenzene is a photoswitchable chemical compound composed of two phenyl rings linked by a N=N double bond. It is the simplest example of an aryl azo compound. The term 'azobenzene' or simply 'azo' is often used to refer to a wide class of similar compounds. These azo compounds are considered as derivatives of diazene (diimide), and are sometimes referred to as 'diazenes'. The diazenes absorb light strongly and are common dyes.

Diarylethene is the general name of a class of chemical compounds that have aromatic functional groups bonded to each end of a carbon–carbon double bond. The simplest example is stilbene, which has two geometric isomers, E and Z.

<span class="mw-page-title-main">Silabenzene</span> Chemical compound

A silabenzene is a heteroaromatic compound containing one or more silicon atoms instead of carbon atoms in benzene. A single substitution gives silabenzene proper; additional substitutions give a disilabenzene, trisilabenzene, etc.

In chemistry, photoisomerization is a form of isomerization induced by photoexcitation. Both reversible and irreversible photoisomerizations are known for photoswitchable compounds. The term "photoisomerization" usually, however, refers to a reversible process.

<span class="mw-page-title-main">Cyclooctatetraene</span> Chemical compound

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

<span class="mw-page-title-main">Cyclodecapentaene</span> Chemical compound

Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.

<span class="mw-page-title-main">Photochromism</span> Reversible chemical transformation by absorption of electromagnetic radiation

Photochromism is the reversible change of color upon exposure to light. It is a transformation of a chemical species (photoswitch) between two forms by the absorption of electromagnetic radiation (photoisomerization), where the two forms have different absorption spectra.

<span class="mw-page-title-main">Prismane</span> Chemical compound

Prismane or 'Ladenburg benzene' is a polycyclic hydrocarbon with the formula C6H6. It is an isomer of benzene, specifically a valence isomer. Prismane is far less stable than benzene. The carbon (and hydrogen) atoms of the prismane molecule are arranged in the shape of a six-atom triangular prism—this compound is the parent and simplest member of the prismanes class of molecules. Albert Ladenburg proposed this structure for the compound now known as benzene. The compound was not synthesized until 1973.

Cycloheptatriene (CHT) is an organic compound with the formula C7H8. It is a closed ring of seven carbon atoms joined by three double bonds (as the name implies) and four single bonds. This colourless liquid has been of recurring theoretical interest in organic chemistry. It is a ligand in organometallic chemistry and a building block in organic synthesis. Cycloheptatriene is not aromatic, as reflected by the nonplanarity of the methylene bridge (-CH2-) with respect to the other atoms; however the related tropylium cation is.

A photoswitch is a type of molecule that can change its structural geometry and chemical properties upon irradiation with electromagnetic radiation. Although often used interchangeably with the term molecular machine, a switch does not perform work upon a change in its shape whereas a machine does. However, photochromic compounds are the necessary building blocks for light driven molecular motors and machines. Upon irradiation with light, photoisomerization about double bonds in the molecule can lead to changes in the cis- or trans- configuration. These photochromic molecules are being considered for a range of applications.

<span class="mw-page-title-main">Succinic anhydride</span> Chemical compound

Succinic anhydride, is an organic compound with the molecular formula (CH2CO)2O. This colorless solid is the acid anhydride of succinic acid.

<span class="mw-page-title-main">Heptacene</span> Chemical compound

Heptacene is an organic compound and a polycyclic aromatic hydrocarbon and the seventh member of the acene or polyacene family of linear fused benzene rings. This compound has long been pursued by chemists because of its potential interest in electronic applications and was first synthesized but not cleanly isolated in 2006. Heptacene was finally fully characterized in bulk by researchers in Germany and the United States in 2017.

<span class="mw-page-title-main">Basketene</span> Chemical compound

Basketene (IUPAC name: pentacyclo[4.4.0.02,5.03,8.04,7]dec-9-ene) is an organic compound with the formula C10H10. It is a polycyclic alkene and the dehydrogenated version of basketane, which was named for its structural similarity to a basket. Due to its hydrocarbon composition and unique structure, the chemical compound is of considerable interest to those examining energy surfaces of these (CH)10 cage molecules and what possible factors influence their minima. Additionally, the complex structure of this compound has intrigued researchers studying the chemistry of highly strained ring systems. Basketene and its family of derivatives also have important chemical and physical properties. These molecules all tend to have a high standard enthalpy of formation, combined with their high density, leading to possible uses in explosives.

A spiropyran is a type of organic chemical compound, known for photochromic properties that provide this molecule with the ability of being used in medical and technological areas. Spiropyrans were discovered in the early twentieth century. However, it was in the middle twenties when Fisher and Hirshbergin observed their photochromic characteristics and reversible reaction. In 1952, Fisher and co-workers announced for the first time photochromism in spiropyrans. Since then, there have been many studies on photochromic compounds that have continued up to the present.

References

  1. 1 2 3 4 Yokoyama, Yasushi (2000). "Fulgides for Memories and Switches". Chemical Reviews. 100 (5): 1717−1739. doi:10.1021/cr980070c. PMID   11777417.
  2. Santiago, Azucena (1968). "Photochromic Fulgides. Spectroscopy and Mechanism of Photoreactions". Journal of the American Chemical Society. 90 (14): 3654–3658. doi:10.1021/ja01016a009.
  3. Sofiya Yu, Zmeeva (2016). "Photochromism of novel [1]benzothien-2-yl fulgides". Tetrahedron. 72 (38): 5776–5782. doi:10.1016/j.tet.2016.08.002.
  4. Nemnes, G. A. (2015). "Electron transport properties of fulgide-based photochromic switches". RSC Advances. 5 (33): 26438–26442. Bibcode:2015RSCAd...526438N. doi:10.1039/C4RA14752A.
  5. Liang, Yongchao L; Dvornikov, Alexander S.; Rentzepis, Peter M. (2000). "Photochromic cross-linked copolymer containing thermally stable fluorescing 2-indolylfulgimide". Chemical Communications (17): 1641–1642. doi:10.1039/B002335N.