Furaneol

Last updated
Furaneol [1]
Furanol Grundstruktur V1.svg
Names
IUPAC name
4-Hydroxy-2,5-dimethyl-3-furanone
Other names
  • 4-Hydroxy-2,5-dimethyl-3(2H)-furanone
  • Alletone
  • Pineapple ketone
  • Strawberry furanone
  • Dimethylhydroxy furanone
Identifiers
3D model (JSmol)
AbbreviationsDMHF
ChEBI
ChemSpider
ECHA InfoCard 100.020.826 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H8O3/c1-3-5(7)6(8)4(2)9-3/h3,8H,1-2H3 Yes check.svgY
    Key: INAXVXBDKKUCGI-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H8O3/c1-3-5(7)6(8)4(2)9-3/h3,8H,1-2H3
    Key: INAXVXBDKKUCGI-UHFFFAOYAH
  • O=C1C(\O)=C(/OC1C)C
Properties
C6H8O3
Molar mass 128.127 g·mol−1
Melting point 73 to 77 °C (163 to 171 °F; 346 to 350 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Furaneol, or strawberry furanone, is an organic compound used in the flavor and perfume industry. It is formally a derivative of furan. It is a white or colorless solid that is soluble in water and organic solvents. [2]

Contents

Odor and occurrence

Although malodorous at high concentrations, it exhibits a sweet strawberry aroma when dilute. [2] It is found in strawberries [3] and a variety of other fruits and it is partly responsible for the smell of fresh pineapple. [4] It is also an important component of the odours of buckwheat, [5] and tomato. [6] Furaneol accumulation during ripening has been observed in strawberries and can reach a high concentration of 37 μg/g. [7]

Furaneol acetate

The acetate ester of furaneol, also known as caramel acetate and strawberry acetate, is also popular with flavorists to achieve a fatty toffee taste and it is used in traces in perfumery to add a sweet gourmand note. [8]

Stereoisomerism

Furaneol has two enantiomers, (R)-(+)-furaneol and (S)-(−)-furaneol. The (R)-form is mainly responsible for the smell. [9]

Stereoisomers of furaneol
(S)-Furanol V1.svg
(S)-configuration
(R)-Furanol V1.svg
(R)-configuration

Biosynthesis

It is one of several products from the dehydration of glucose. Its immediate biosynthetic precursor is the glucoside, derived from dehydration of sucrose. [2]

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a functional group derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Miso</span> Traditional Japanese seasoning

Miso is a traditional Japanese seasoning. It is a thick paste produced by fermenting soybeans with salt and kōji and sometimes rice, barley, seaweed, or other ingredients. It is used for sauces and spreads, pickling vegetables, fish, or meats, and mixing with dashi soup stock to serve as miso soup, a Japanese culinary staple. Miso is high in protein and rich in vitamins and minerals, and it played an important nutritional role in feudal Japan. Miso is still widely used in both traditional and modern cooking in Japan and has been gaining worldwide interest.

<span class="mw-page-title-main">Buckwheat</span> Species of flowering plant in the family Polygonaceae

Buckwheat or common buckwheat is a flowering plant in the knotweed family Polygonaceae cultivated for its grain-like seeds and as a cover crop. Buckwheat originated around the 6th millennium BCE in the region of what is now Yunnan Province in southwestern China. The name "buckwheat" is used for several other species, such as Fagopyrum tataricum, a domesticated food plant raised in Asia.

Furfural is an organic compound with the formula C4H3OCHO. It is a colorless liquid, although commercial samples are often brown. It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. The name furfural comes from the Latin word furfur, meaning bran, referring to its usual source. Furfural is only derived from dried biomass. In addition to ethanol, acetic acid, and sugar, furfural is one of the oldest organic chemicals available readily purified from natural precursors.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Azulene</span> Chemical compound

Azulene is an aromatic organic compound and an isomer of naphthalene. Naphthalene is colourless, whereas azulene is dark blue. The compound is named after its colour, as "azul" is Spanish for blue. Two terpenoids, vetivazulene (4,8-dimethyl-2-isopropylazulene) and guaiazulene (1,4-dimethyl-7-isopropylazulene), that feature the azulene skeleton are found in nature as constituents of pigments in mushrooms, guaiac wood oil, and some marine invertebrates.

<span class="mw-page-title-main">Aroma compound</span> Chemical compound that has a smell or odor

An aroma compound, also known as an odorant, aroma, fragrance or flavoring, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

<span class="mw-page-title-main">Sotolon</span> Chemical compound

Sotolon is a lactone and an extremely potent aroma compound, with the typical smell of fenugreek or curry at high concentrations and maple syrup, caramel, or burnt sugar at lower concentrations. Sotolon is the major aroma and flavor component of fenugreek seed and lovage, and is one of several aromatic and flavor components of artificial maple syrup. It is also present in molasses, aged rum, aged sake and white wine, flor sherry, roast tobacco, and dried fruiting bodies of the mushroom Lactarius helvus. Sotolon can pass through the body relatively unchanged, and consumption of foods high in sotolon, such as fenugreek, can impart a maple syrup aroma to one's sweat and urine. In some individuals with the genetic disorder maple syrup urine disease, sotolon is spontaneously produced in their bodies and excreted in their urine, leading to the disease's characteristic smell.

<i>Controlled Drugs and Substances Act</i> Canadian federal drug regulation act

The Controlled Drugs and Substances Act is Canada's federal drug control statute. Passed in 1996 under Prime Minister Jean Chrétien's government, it repeals the Narcotic Control Act and Parts III and IV of the Food and Drugs Act, and establishes eight Schedules of controlled substances and two Classes of precursors. It provides that "The Governor in Council may, by order, amend any of Schedules I to VIII by adding to them or deleting from them any item or portion of an item, where the Governor in Council deems the amendment to be necessary in the public interest."

<span class="mw-page-title-main">Isosorbide</span> Chemical compound

Isosorbide is a bicyclic chemical compound from the group of diols and the oxygen-containing heterocycles, containing two fused furan rings. The starting material for isosorbide is D-sorbitol, which is obtained by catalytic hydrogenation of D-glucose, which is in turn produced by hydrolysis of starch. Isosorbide is discussed as a plant-based platform chemical from which biodegradable derivatives of various functionality can be obtained.

The odor detection threshold is the lowest concentration of a certain odor compound that is perceivable by the human sense of smell. The threshold of a chemical compound is determined in part by its shape, polarity, partial charges, and molecular mass. The olfactory mechanisms responsible for a compound's different detection threshold is not well understood. As such, odor thresholds cannot be accurately predicted. Rather, they must be measured through extensive tests using human subjects in laboratory settings.

In organic chemistry, the Paal–Knorr synthesis is a reaction used to synthesize substituted furans, pyrroles, or thiophenes from 1,4-diketones. It is a synthetically valuable method for obtaining substituted furans and pyrroles, which are common structural components of many natural products. It was initially reported independently by German chemists Carl Paal and Ludwig Knorr in 1884 as a method for the preparation of furans, and has been adapted for pyrroles and thiophenes. Although the Paal–Knorr synthesis has seen widespread use, the mechanism wasn't fully understood until it was elucidated by V. Amarnath et al. in the 1990s.

<span class="mw-page-title-main">3-Mercapto-3-methylbutan-1-ol</span> Chemical compound

3-Mercapto-3-methylbutan-1-ol, also known as MMB, is a common odorant found in food and cat urine. The aromas ascribed to MMB include catty, roasty, broth-like, meaty, and savory, or similar to cooked leeks.

<span class="mw-page-title-main">2,5-Furandicarboxylic acid</span> Chemical compound

2,5-Furandicarboxylic acid (FDCA) is an organic chemical compound consisting of two carboxylic acid groups attached to a central furan ring. It was first reported as dehydromucic acid by Rudolph Fittig and Heinzelmann in 1876, who produced it via the action of concentrated hydrobromic acid upon mucic acid. It can be produced from certain carbohydrates and as such is a renewable resource, it was identified by the US Department of Energy as one of 12 priority chemicals for establishing the “green” chemistry industry of the future. Furan-2,5-dicarboxylic acid (FDCA) has been suggested as an important renewable building block because it can substitute for terephthalic acid (PTA) in the production of polyesters and other current polymers containing an aromatic moiety.

<span class="mw-page-title-main">2,5-Bis(hydroxymethyl)furan</span> Chemical compound

2,5-Bis(hydroxymethyl)furan (BHMF) is a heterocyclic organic compound, and is a derivative of a broader class of compounds known as furans. It is produced from cellulose and has received attention as a biofeedstock. It is a white solid, although commercial samples can appear yellowish or tan.

<span class="mw-page-title-main">Coffee furanone</span> Chemical compound

Coffee furanone (2-methyltetrahydrofuran-3-one) is a pleasant smelling liquid furan derivative which is a volatile constituent of the aroma complex of roasted coffee. Coffee furanone is less odorous than furfuryl mercaptan, which with an odor threshold of 0.005 ppb was the first high impact aroma chemical, but has a very pleasant sweet caramel character, with some nuttiness.

<span class="mw-page-title-main">Rosefuran</span> Chemical compound

Rosefuran (3-methyl-2-prenylfuran) is an organic compound, classified as a terpenoid. It is a minor constituent of the aroma of the rose. Rosefuran is a 2,3-disubstituted furan. It has an odor threshold of 200 ppb and constitutes 0.16% of Bulgarian rose oil. Rosefuran has been established as a female sex pheromone of an acarid mite, Caloglyphus sp. Concentrations of less than 100 ng of synthetic rosefuran caused sexual excitation in males of the species.

<span class="mw-page-title-main">Ethane-1,1-dithiol</span> Chemical compound

Ethane-1,1-dithiol is an organosulfur compound with formula CH3CH(SH)2. It is a colourless smelly liquid that is added to or found in some foods. The compound is an example of a geminal dithiol.

<span class="mw-page-title-main">2,2,5,5-Tetramethyltetrahydrofuran</span> Chemical compound

2,2,5,5-tetramethyltetrahydrofuran (TMTHF) or 2,2,5,5-tetramethyloxolane (TMO) is a heterocyclic compound with the formula C
8
H
16
O
, or (CH3)2(C(CH2)2OC)(CH3)2. It can be seen as derivative of tetrahydrofuran (oxolane) with four methyl groups replacing four hydrogen atoms on each of the carbon atoms in the ring that are adjacent to the oxygen. The absence of hydrogen atoms adjacent to the oxygen means that TMTHF (TMO) does not form peroxides, unlike other common ethers such as tetrahydrofuran, diethyl ether and CPME.

References

  1. 4-Hydroxy-2,5-dimethyl-3(2H)-furanone at Sigma-Aldrich
  2. 1 2 3 Zabetakis, I.; Gramshaw, J. W.; Robinson, D. S. (1999). "2,5-Dimethyl-4-hydroxy-2H-furan-3-one and its derivatives: analysis, synthesis and biosynthesis - a review". Food Chemistry. 65: 139–151. doi:10.1016/S0308-8146(98)00203-9.
  3. Ulrich, D.; Hoberg, Edelgard; Rapp, Adolf; Kecke, Steffen (1997). "Analysis of strawberry flavour – discrimination of aroma types by quantification of volatile compounds". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 205 (3): 218–223. doi:10.1007/s002170050154. S2CID   96680333.
  4. Tokitomo Y, Steinhaus M, Büttner A, Schieberle P (2005). "Odor-active constituents in fresh pineapple (Ananas comosus[L.] Merr.) by quantitative and sensory evaluation". Biosci. Biotechnol. Biochem. 69 (7): 1323–30. doi: 10.1271/bbb.69.1323 . PMID   16041138.
  5. Janes D, Kantar D, Kreft S, Prosen H (2008). "Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS". Food Chemistry. 112: 120–124. doi:10.1016/j.foodchem.2008.05.048.
  6. Buttery, Ron G.; Takeoka, Gary R.; Naim, Michael; Rabinowitch, Haim; Nam, Youngla (2001). "Analysis of Furaneol in Tomato Using Dynamic Headspace Sampling with Sodium Sulfate". Journal of Agricultural and Food Chemistry. 49 (9): 4349–4351. doi:10.1021/jf0105236. PMID   11559136.
  7. Pérez, A. G. (2008). Fruit and Vegetable Flavour. Woodhead Publishing. ISBN   978-1-84569-183-7.
  8. "Strawberry furanone acetate". thegoodscentscompany.com/.
  9. Leffingwell,:John C. Chirality & Odour Perception – The Furaneols.