GFER

Last updated
GFER
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GFER , ALR, ERV1, HERV1, HPO, HPO1, HPO2, HSS, growth factor, augmenter of liver regeneration, MMCHD, MPMCD
External IDs OMIM: 600924 MGI: 107757 HomoloGene: 55884 GeneCards: GFER
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005262

NM_023040
NM_212443
NM_001379038
NM_001379039

RefSeq (protein)

NP_005253

NP_075527

Location (UCSC) Chr 16: 1.98 – 1.99 Mb Chr 17: 24.91 – 24.92 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Growth factor, augmenter of liver regeneration (ERV1 homolog, S. cerevisiae), also known as GFER, or Hepatopoietin is a protein which in humans is encoded by the GFER gene. This gene is also known as essential for respiration and vegatative growth, augmenter of liver regeneration, and growth factor of Erv1-like/Hepatic regenerative stimulation substance. [5] [6] [7]

Contents

Structure

The GFER gene is located on the p arm of chromosome 16 at position 13.3 and it spans 3,600 base pairs. [5] The GFER gene produces a 15.4 kDa protein composed of 130 amino acids. [8] [9] The structure of the protein is a homodimer which has been found to be fairly similar to the scERV1 protein of yeast. [10]

Genomics

The gene resides on chromosome 16 in the interval containing the locus for polycystic kidney disease (PKD1). The putative gene product is 42% similar to the scERV1 protein of yeast.

Function

The hepatotrophic factor designated augmenter of liver regeneration (ALR) is thought to be one of the factors responsible for the extraordinary regenerative capacity of mammalian liver. It has also been called hepatic regenerative stimulation substance (HSS). The yeast scERV1 gene had been found to be essential for oxidative phosphorylation, the maintenance of mitochondrial genomes, and the cell division cycle. The human gene is both the structural and functional homolog of the yeast scERV1 gene. [5]

Clinical significance

Mutations in GFER has been shown to result in Myopathy, mitochondrial progressive, with congenital cataract, hearing loss and developmental delay (MPMCHD). MPMCHD is a disease characterized by progressive myopathy and partial combined respiratory-chain deficiency, congenital cataract, sensorineural hearing loss, and developmental delay.

Interactions

GFER has been shown to interact with COP9 constitutive photomorphogenic homolog subunit 5 [11] and BNIPL. [12]

Related Research Articles

<span class="mw-page-title-main">Hepatocyte growth factor</span> Mammalian protein found in Homo sapiens

Hepatocyte growth factor (HGF) or scatter factor (SF) is a paracrine cellular growth, motility and morphogenic factor. It is secreted by mesenchymal cells and targets and acts primarily upon epithelial cells and endothelial cells, but also acts on haemopoietic progenitor cells and T cells. It has been shown to have a major role in embryonic organ development, specifically in myogenesis, in adult organ regeneration, and in wound healing.

<span class="mw-page-title-main">GDF11</span> Protein-coding gene in humans

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP-11), is a protein that in humans is encoded by the growth differentiation factor 11 gene. GDF11 is a member of the Transforming growth factor beta family.

<span class="mw-page-title-main">KLF4</span> Protein-coding gene in the species Homo sapiens

Kruppel-like factor 4 is a member of the KLF family of zinc finger transcription factors, which belongs to the relatively large family of SP1-like transcription factors. KLF4 is involved in the regulation of proliferation, differentiation, apoptosis and somatic cell reprogramming. Evidence also suggests that KLF4 is a tumor suppressor in certain cancers, including colorectal cancer. It has three C2H2-zinc fingers at its carboxyl terminus that are closely related to another KLF, KLF2. It has two nuclear localization sequences that signals it to localize to the nucleus. In embryonic stem cells (ESCs), KLF4 has been demonstrated to be a good indicator of stem-like capacity. It is suggested that the same is true in mesenchymal stem cells (MSCs).

<span class="mw-page-title-main">RAD52</span> Protein-coding gene in the species Homo sapiens

RAD52 homolog , also known as RAD52, is a protein which in humans is encoded by the RAD52 gene.

<span class="mw-page-title-main">MORF4L1</span>

Mortality factor 4-like protein 1 is a protein that in humans is encoded by the MORF4L1 gene.

<span class="mw-page-title-main">MAGED1</span> Protein-coding gene in humans

Melanoma-associated antigen D1 is a protein that in humans is encoded by the MAGED1 gene.

<span class="mw-page-title-main">DACH1</span> Protein-coding gene in the species Homo sapiens

Dachshund homolog 1, also known as DACH1, is a protein which in humans is encoded by the DACH1 gene. DACH1 has been shown to interact with Ubc9, Smad4, and NCoR.

<span class="mw-page-title-main">Vascular endothelial growth inhibitor</span> Protein-coding gene in the species Homo sapiens

Vascular endothelial growth inhibitor (VEGI), also known as TNF-like ligand 1A (TL1A) and TNF superfamily member 15 (TNFSF15), is protein that in humans is encoded by the TNFSF15 gene. VEGI is an anti-angiogenic protein. It belongs to tumor necrosis factor (ligand) superfamily, where it is member 15. It is the sole known ligand for death receptor 3, and it can also be recognized by decoy receptor 3.

<span class="mw-page-title-main">ING4</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 4 is a protein that in humans is encoded by the ING4 gene.

<span class="mw-page-title-main">UTP20</span> Protein-coding gene in the species Homo sapiens

Small subunit processome component 20 homolog is a protein that in humans is encoded by the UTP20 gene.

<span class="mw-page-title-main">PINX1</span> Protein-coding gene in the species Homo sapiens

PIN2/TERF1-interacting telomerase inhibitor 1, also known as PINX1, is a human gene. PINX1 is also known as PIN2 interacting protein 1. PINX1 is a telomerase inhibitor and a possible tumor suppressor.

<span class="mw-page-title-main">STX16</span> Protein-coding gene in the species Homo sapiens

Syntaxin-16 is a protein that in humans is encoded by the STX16 gene.

<span class="mw-page-title-main">PDCD5</span> Protein-coding gene in the species Homo sapiens

Programmed cell death protein 5 is a protein, originally identified as an apoptosis-accelerating protein, that in humans is encoded by the PDCD5 gene.

<span class="mw-page-title-main">PAK6</span>

Serine/threonine-protein kinase PAK 6 is an enzyme that in humans is encoded by the PAK6 gene.

<span class="mw-page-title-main">SYAP1</span> Protein-coding gene in the species Homo sapiens

Synapse-associated protein 1 is a protein that in humans is encoded by the SYAP1 gene.

<span class="mw-page-title-main">SDAD1</span> Protein-coding gene in the species Homo sapiens

Protein SDA1 homolog is a protein that in humans is encoded by the SDAD1 gene.

<span class="mw-page-title-main">Hippo signaling pathway</span> Signaling pathway that controls organ size

The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a "hippopotamus"-like phenotype.

<span class="mw-page-title-main">SLC52A3</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 52, member 3, formerly known as chromosome 20 open reading frame 54 and riboflavin transporter 2, is a protein that in humans is encoded by the SLC52A3 gene.

Small nucleolar RNA host gene 1 is a non-protein coding RNA that in humans is encoded by the SNHG1 gene.

SHC014-CoV is a SARS-like coronavirus (SL-COV) which infects horseshoe bats. It was discovered in Kunming in Yunnan Province, China. It was discovered along with SL-CoV Rs3367, which was the first bat SARS-like coronavirus shown to directly infect a human cell line. The line of Rs3367 that infected human cells was named Bat SARS-like coronavirus WIV1.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000127554 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000040888 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: GFER growth factor, augmenter of liver regeneration (ERV1 homolog, S. cerevisiae)".
  6. "GFER - FAD-linked sulfhydryl oxidase ALR - Homo sapiens (Human) - GFER gene & protein" . Retrieved 2018-08-21. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  7. "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  8. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  9. "GFER-Sulfhydryl oxidase". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 2018-08-21. Retrieved 2018-08-21.
  10. Lisowsky T, Weinstat-Saslow DL, Barton N, Reeders ST, Schneider MC (October 1995). "A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast". Genomics. 29 (3): 690–7. doi: 10.1006/geno.1995.9950 . PMID   8575761.
  11. Lu C, Li Y, Zhao Y, Xing G, Tang F, Wang Q, Sun Y, Wei H, Yang X, Wu C, Chen J, Guan KL, Zhang C, Chen H, He F (January 2002). "Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway". FASEB Journal. 16 (1): 90–2. doi: 10.1096/fj.01-0506fje . PMID   11709497. S2CID   7006611.
  12. Shen L, Hu J, Lu H, Wu M, Qin W, Wan D, Li YY, Gu J (April 2003). "The apoptosis-associated protein BNIPL interacts with two cell proliferation-related proteins, MIF and GFER". FEBS Letters. 540 (1–3): 86–90. doi: 10.1016/S0014-5793(03)00229-1 . PMID   12681488. S2CID   9977125.

Further reading