GRB 070125

Last updated
GRB 070125
Artist's impression of a gamma-ray burst.jpg
Event type Gamma-ray burst
Datec. 9.5 billion years ago
(detected 25 January 2007)
Durationc. 1 minute and 10 seconds
Instrument InterPlanetary Network
Constellation Gemini
Distancec. 9.5 billion ly
Redshift 1.55
Other designationsGRB 070125

GRB 070125 is a gamma-ray burst (GRB) that was observed on January 25, 2007, by the InterPlanetary Network, [1] which lasted for around 1 minute and 10 seconds. [2] It is unique in that it did not occur in a galaxy, but in intergalactic space. This is unusual, since they are caused by the hypernovae of young massive stars, which usually means having to reside in a galaxy, as almost all stars are formed in galaxies, particularly high mass ones. It has a redshift of 1.55, which equals to a light travel distance of 9.5 billion years. [3]

It is theorized that the star formed in the tidal tail resulting from the interaction of two nearby galaxies, deep in intergalactic space.

A month after it was detected, the Large Binocular Telescope observed a 26th magnitude optical afterglow from the gamma ray burst. [4]

Related Research Articles

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">GRB 970228</span> Gamma-ray burst detected on 28 Feb 1997, the first for which an afterglow was observed

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.

<span class="mw-page-title-main">Extragalactic cosmic ray</span>

Extragalactic cosmic rays are very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy. While at low energies, the majority of cosmic rays originate within the Galaxy (such as from supernova remnants), at high energies the cosmic ray spectrum is dominated by these extragalactic cosmic rays. The exact energy at which the transition from galactic to extragalactic cosmic rays occurs is not clear, but it is in the range 1017 to 1018 eV.

<span class="mw-page-title-main">Gamma-ray burst progenitors</span> Types of celestial objects that can emit gamma-ray bursts

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.

<span class="mw-page-title-main">GRB 080916C</span> Most powerful gamma-ray burst ever recorded (1/15/21)

GRB 080916C is a gamma-ray burst (GRB) that was recorded on September 16, 2008, in the Carina constellation and detected by NASA's Fermi Gamma-ray Space Telescope. The burst lasted for 23 minutes. It is one of the most extreme gamma-ray bursts ever recorded, and was the most energetic gamma-ray burst ever recorded, until GRB 221009A was recorded in 2022. The explosion had the energy of approximately 9,000 type Ia supernovae if the emission was isotropically emitted, and the gas jets emitting the initial gamma rays moved at a minimum velocity of approximately 299,792,158 m/s, making this blast one of the most extreme recorded.

<span class="mw-page-title-main">GRB 970508</span> Gamma-ray burst detected on May 8, 1997

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

<span class="mw-page-title-main">GRB 090423</span> Gamma-ray burst detected in 2009

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.

<span class="mw-page-title-main">GRB 090429B</span> Gamma-ray burst in constellation Canes Venatici

GRB 090429B was a gamma-ray burst observed on 29 April 2009 by the Burst Alert Telescope aboard the Swift satellite. The burst triggered a standard burst-response observation sequence, which started 106 seconds after the burst. The X-ray telescope aboard the satellite identified an uncatalogued fading source. No optical or UV counterpart was seen in the UV–optical telescope. Around 2.5 hours after the burst trigger, a series of observations was carried out by the Gemini North telescope, which detected a bright object in the infrared part of the spectrum. No evidence of a host galaxy was found either by Gemini North or by the Hubble Space Telescope. Though this burst was detected in 2009, it was not until May 2011 that its distance estimate of 13.14 billion light-years was announced. With 90% likelihood, the burst had a photometric redshift greater than z = 9.06, which would make it the most distant GRB known, although the error bar on this estimate is large, providing a lower limit of z > 7.

<span class="mw-page-title-main">GRB 101225A</span> Gamma-ray burst event of December 25, 2010

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

<span class="mw-page-title-main">Neutron star merger</span> Type of stellar collision

A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to gravitational radiation. When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole. The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. These events are believed to create short gamma-ray bursts.

<span class="mw-page-title-main">GRB 130427A</span> Gamma-ray burst

GRB 130427A was a record-setting gamma-ray burst, discovered starting on April 27, 2013. This GRB was associated to SN 2013cq, of which the appearance of optical signal was predicted on May 2, 2013 and detected on May 13, 2013. The Fermi space observatory detected a gamma-ray with an energy of at least 94 billion electron volts. It was simultaneously detected by the Burst Alert Telescope aboard the Swift telescope and was the brightest burst Swift had ever detected. It was one of the five closest GRBs, at about 3.6 billion light-years away, and was comparatively long-lasting.

Fermi's Large Area Telescope (LAT) recorded one gamma ray with an energy of at least 94 billion electron volts (GeV), or some 35 billion times the energy of visible light, and about three times greater than the LAT's previous record. The GeV emission from the burst lasted for hours, and it remained detectable by the LAT for the better part of a day, setting a new record for the longest gamma-ray emission from a GRB.

<span class="mw-page-title-main">Kilonova</span> Neutron star merger

A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.

<span class="mw-page-title-main">GRB 160625B</span>

GRB 160625B was a bright gamma-ray burst (GRB) detected by NASA's Fermi Gamma-ray Space Telescope on 25 June 2016 and, three minutes later, by the Large Area Telescope. This was followed by a bright prompt optical flash, during which variable linear polarization was measured. This was the first time that these observations were made when the GRB was still bright and active. The source of the GRB was a possible black hole, within the Delphinus constellation, about 9 billion light-years (light travel distance) away (a redshift of z = 1.406). It had a fluence of 5.7×10−4 erg cm−2, and energy of 5 × 1054 erg. The burst lasted over 11 minutes (680 s), and was one of the most energetic bursts ever recorded.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last moments of the inspiral process of a binary pair of neutron stars, ending with their merger. It was the first GW observation to be confirmed by non-gravitational means. Unlike the five previous GW detections—which were of merging black holes and thus not expected to produce a detectable electromagnetic signal—the aftermath of this merger was seen across the electromagnetic spectrum by 70 observatories on 7 continents and in space, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

<span class="mw-page-title-main">Peter Garnavich</span>

Peter M. Garnavich is a faculty member of the Department of Physics and Astronomy at the University of Notre Dame. His primary research area is the study of supernovae and their diversity. He has also studied gamma ray bursts and cataclysmic variable stars. Garnavich is a member of a supernova search team that contributed to the discovery of dark energy in 1998. At Notre Dame, Garnavich has developed and participated in collaborations using the Spitzer Space Telescope, the Large Binocular Telescope, the Hubble Space Telescope, and the Kepler Space Telescope. He was named a fellow of the American Astronomical Society (AAS) in 2024.

<span class="mw-page-title-main">GRB 190114C</span> Notable high energy gamma ray burst explosion

GRB 190114C was an extreme gamma-ray burst explosion from a galaxy 4.5 billion light years away (z=0.4245; magnitude=15.60est) near the Fornax constellation, that was initially detected in January 2019. The afterglow light emitted soon after the burst was found to be tera-electron volt radiation from inverse Compton emission, identified for the first time. According to the astronomers, "We observed a huge range of frequencies in the electromagnetic radiation afterglow of GRB 190114C. It is the most extensive to date for a gamma-ray burst." Also, according to other astronomers, "light detected from the object had the highest energy ever observed for a GRB: 1 Tera electron volt (TeV) -- about one trillion times as much energy per photon as visible light"; another source stated, "the brightest light ever seen from Earth [to date].".

<span class="mw-page-title-main">GRB 221009A</span> Gamma-ray burst

GRB 221009A was an extraordinarily bright and very energetic gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst was ten minutes long, but was detectable for more than ten hours following initial detection. Despite being around two billion light-years away, it was powerful enough to affect Earth's atmosphere, having the strongest effect ever recorded by a gamma-ray burst on the planet. The peak luminosity of GRB 221009A was measured by Konus-Wind to be ~ 2.1 × 1047 W and by Fermi Gamma-ray Burst Monitor to be ~ 1.0 × 1047 W over its 1.024s interval. A burst as energetic and as close to Earth as 221009A is thought to be a once-in-10,000-year event. It was the brightest and most energetic gamma-ray burst ever recorded, with some dubbing it the BOAT, or Brightest Of All Time.

References

  1. "Gamma Ray Explosion GRB 070125 Is A Cosmic Mystery". December 18, 2007. Retrieved January 19, 2022.
  2. Chandra, P.; Cenko, S. B.; Frail, D. A.; Chevalier, R. A.; Macquart, J. P.; Kulkarni, S. R.; Bock, D. C. J.; Bertoldi, F.; Kasliwal, M.; Fox, D. B.; Price, P. A.; Berger, E.; Soderberg, A. M.; Harrison, F. A.; Gal-Yam, A.; Ofek, E. O.; Rau, A.; Schmidt, B. P.; Cameron, P. B.; Cowie, L. L.; Cowie, A.; Roth, K. C.; Dopita, M.; Peterson, B.; Penprase, B. E. (2008). "A Comprehensive Study of GRB 070125, A Most Energetic Gamma-Ray Burst". The Astrophysical Journal. 683 (1): 924–942. arXiv: 0802.2748 . Bibcode:2008ApJ...683..924C. doi:10.1086/589807. hdl: 1885/35159 . S2CID   40178169.
  3. "A Gamma-Ray Burst Out of Nowhere". Sky and Telescope. 18 December 2007. Archived from the original on 2012-02-14. Retrieved 2019-08-22.
  4. William G. Gilroy. "First science from the Large Binocular Telescope: Notre Dame astrophysicist reports gamma ray finding". Archived from the original on 2009-05-02. Retrieved 2009-08-09.