DN Geminorum

Last updated
DN Geminorum
DNGemLocation.png
Location of DN Geminorum (circled in red)
Observation data
Epoch J2000       Equinox J2000
Constellation Gemini
Right ascension 06h 54m 54.34929s [1]
Declination +32° 08 27.9247 [1]
Apparent magnitude  (V)15.5±0.5 [2]
Astrometry
Proper motion (μ)RA: −0.794 [1]   mas/yr
Dec.: −4.323 [1]   mas/yr
Parallax (π)0.7288 ± 0.0807  mas [1]
Distance approx. 4,500  ly
(approx. 1,400  pc)
Absolute magnitude  (MV)5.02±0.60 [2]
Details
White dwarf
Mass 0.93±0.15 [2]   M
Other designations
Nova Gem 1912, Nova Geminorum II [3] , DN Gem, HD  50480 [4]
Database references
SIMBAD data
The light curve of DN Geminorum, plotted from AAVSO data DNGemLightCurve.png
The light curve of DN Geminorum, plotted from AAVSO data

DN Geminorum or Nova Geminorum 1912 was a classical nova which lit up in 1912 in the constellation Gemini. It was discovered by Norwegian variable star observer Sigurd Einbu [3] on March 12, 1912 before reaching peak brightness, which allowed early-stage spectra to be collected by Yerkes Observatory. [5] The nova reached a maximum brightness of around 3.5 mag before declining, [6] which means it was visible to the naked eye. Its brightness decreased over the following 36 days by 3 magnitudes as it gradually faded from sight. The light curve saw two maxima a few months after the outburst, along with strong oscillations. [6] Today its brightness is visual magnitude 15.5. [2]

This is a close binary star system consisting of a white dwarf with 93% [2] of the Sun's mass – the source for the nova explosion – and a lower mass red dwarf [6] companion from which the white dwarf is accreting matter. [2] The system is located approximately 4,500  light years from the Sun based on parallax, with its visual magnitude being diminished by an extinction of 0.53±0.12 due to interstellar dust. [2] Observations of this system showed a sinusoidal variation in luminosity with a period of 3.06840 ± 0.00012 h, which is likely the orbital period for the pair. This oscillation may be caused by irradiation of the companion star by the white dwarf. [6]

Related Research Articles

<span class="mw-page-title-main">GK Persei</span> Star in the constellation Perseus

GK Persei was a bright nova first observed on Earth in 1901. It was discovered by Thomas David Anderson, an Edinburgh clergyman, at 02:40 UT on 22 February 1901 when it was at magnitude 2.7. It reached a maximum magnitude of 0.2, the brightest nova of modern times until Nova Aquilae 1918. After fading into obscurity at about magnitude 12 to 13 during the early 20th century, GK Persei began displaying infrequent outbursts of 2 to 3 magnitudes. Since about 1980, these outbursts have become quite regular, typically lasting about two months and occurring about every three years. Thus, GK Persei seems to have changed from a classical nova like Nova Aquilae 1918 to something resembling a typical dwarf nova-type cataclysmic variable star.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">V382 Velorum</span> 1999 Nova seen in the constellation Vela

V382 Velorum, also known as Nova Velorum 1999, was a bright nova which occurred in 1999 in the southern constellation Vela. V382 Velorum reached a brightness of 2.6 magnitude, making it easily visible to the naked eye. It was discovered by Peter Williams of Heathcote, New South Wales, Australia at 09:30 UT on 22 May 1999. Later that same day it was discovered independently at 10:49 UT by Alan C. Gilmore at Mount John University Observatory in New Zealand.

<span class="mw-page-title-main">DI Lacertae</span> 1910 Nova in the constellation Lacerta

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. Before the nova event DI Lacertae was a 14th magnitude star, and by 1950 it had returned to 14th magnitude.

<span class="mw-page-title-main">CP Lacertae</span> 1936 Nova seen in the constellation Lacerta

CP Lacertae was a nova, which lit up on June 18, 1936 in the constellation Lacerta. It was discovered independently by several observers including Leslie Peltier in the US, E. Loreta in Italy, and Kazuaki Gomi, a Japanese barber who discovered the nova during the 19 June 1936 total solar eclipse.

<span class="mw-page-title-main">BT Monocerotis</span> Nova seen in 1939

BT Monocerotis was a nova, which lit up in the constellation Monoceros in 1939. It was discovered on a spectral plate by Fred L. Whipple on December 23, 1939. BT Monocerotis is believed to have reached mag 4.5, which would have made it visible to the naked eye, but that value is an extrapolation; the nova was not observed at peak brightness Its brightness decreased after the outbreak by 3 magnitudes in 182 days, making it a "slow nova". The light curve for the eruption had a long plateau period.

<span class="mw-page-title-main">HR Lyrae</span> Nova that appeared in 1919

HR Lyrae or Nova Lyrae 1919 was a nova which occurred in the constellation Lyra in 1919. Its discovery was announced by Johanna C. Mackie on 6 December 1919. She discovered it while examining photographic plates taken at the Harvard College Observatory. The bulletin announcing the discovery states "Between December 4 and 6 it rose rapidly from the sixteenth magnitude or fainter, to a maximum of about 6.5". It was the first nova ever reported in Lyra, and Mackie was awarded the AAVSO gold medal for her discovery. Its peak magnitude of 6.5 implies that it might have been visible to the naked eye, under ideal conditions.

<span class="mw-page-title-main">DK Lacertae</span> 1950 Nova seen in the constellation Lacerta

DK Lacertae was a nova, which lit up in the constellation Lacerta in 1950. The nova was discovered by Charles Bertaud of the Paris Observatory on a photographic plate taken on 23 January 1950. At the time of its discovery, it had an apparent magnitude of 6.1. DK Lacertae reached peak magnitude 5.0, making it easily visible to the naked eye.

<span class="mw-page-title-main">V842 Centauri</span> Nova in the constellation Centaurus seen in 1986

V842 Centauri, also known as Nova Centauri 1986, was a nova which occurred in 1986 in the constellation Centaurus. It was discovered by Robert H. McNaught of Siding Spring Observatory in Australia, on 22 November 1986. At the time of its discovery, it had an apparent magnitude of 5.6. It reached a peak magnitude of 4.6 one and a half days later, making it easily visible to the naked eye.

<span class="mw-page-title-main">U Geminorum</span> Star in the constellation Gemini

U Geminorum, in the constellation Gemini, is an archetypal example of a dwarf nova. The binary star system consists of a white dwarf closely orbiting a red dwarf. Every few months it undergoes an outburst that greatly increases its brightness. The dwarf nova class of variable stars are often referred to as U Geminorum variables after this star.

<span class="mw-page-title-main">RX Andromedae</span> Cataclysmic variable star system in the constellation Andromeda

RX Andromedae is a variable star in the constellation of Andromeda. Although it is classified as a dwarf nova of the Z Camelopardalis (UGZ) type, it has shown low-luminosity periods typical of VY Sculptoris stars. However, for most of the time it varies from an apparent visual magnitude of 15.1 at minimum brightness to a magnitude of 10.2 at maximum brightness, with a period of approximately 13 days.

<span class="mw-page-title-main">HR Delphini</span> 1967 Nova seen in the constellation Delphinus

HR Delphini, also known as Nova Delphini 1967, was a nova which appeared in the constellation Delphinus in 1967. It was discovered by George Alcock at 22:35 UT on 8 July 1967, after searching the sky for over 800 hours with binoculars. At the time of discovery it had an apparent magnitude of 5.0. It reached a peak brightness of magnitude 3.5 on 13 December 1967, making it easily visible to the naked eye around that time. Pre-outburst photographs taken with the Samuel Oschin telescope showed it as a ~12th magnitude star which might have been variable.

<span class="mw-page-title-main">V1017 Sagittarii</span> Star in the constellation Sagittarius

V1017 Sagittarii is a cataclysmic variable star system in the constellation Sagittarius. It first erupted in 1919, reaching magnitude 7. Its other eruptions in 1901, 1973 and 1991 only reached magnitude 10, leading it to be reclassified from a recurrent nova to a dwarf nova.

<span class="mw-page-title-main">IM Normae</span> Recurrent nova in the constellation Norma

IM Normae is a recurrent nova in the constellation Norma, one of only ten known in the Milky Way. It has been observed to erupt in 1920 and 2002, reaching magnitude 8.5 from a baseline of 18.3. It was poorly monitored after the first eruption, so it is possible that it erupted in between these dates.

<span class="mw-page-title-main">SU Ursae Majoris</span> Variable star in the constellation Ursa Major

SU Ursae Majoris, or SU UMa, is a close binary star in the northern circumpolar constellation of Ursa Major. It is a periodic cataclysmic variable that varies in magnitude from a peak of 10.8 down to a base of 14.96. The distance to this system, as determined from its annual parallax shift of 4.53 mas, is 719 light-years. It is moving further from the Earth with a heliocentric radial velocity of +27 km/s.

<span class="mw-page-title-main">V392 Persei</span> Nova in the constellation Perseus

V392 Persei, also known as Nova Persei 2018, is a bright nova in the constellation Perseus discovered on April 29, 2018. It was previously known as a dwarf nova.

<span class="mw-page-title-main">LL Andromedae</span> Dwarf nova star in the constellation Andromeda

LL Andromedae is a dwarf nova in the constellation Andromeda, discovered during an outburst in 1979. Its typical apparent visual magnitude is 19.4, but undergoes outbursts events when can reach a peak magnitude of 14.3. Since this magnitude is reached during the most powerful outbursts, while less bright outbursts can occur, it is classified as a SU Ursae Majoris variable.

<span class="mw-page-title-main">PX Andromedae</span> Star in the constellation Andromeda

PX Andromedae is an eclipsing cataclysmic variable star in the constellation Andromeda. It has been classified as a SW Sextantis variable, and its apparent visual magnitude varies between 14.04 and 17.

<span class="mw-page-title-main">QZ Aurigae</span> Nova seen in 1964

QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.

<span class="mw-page-title-main">SW Ursae Majoris</span> Variable star in the constellation Ursa Major

SW Ursae Majoris is a cataclysmic binary star system in the northern circumpolar constellation of Ursa Major, abbreviated SW UMa. During quiescence it has an apparent visual magnitude of 16.5–17, which is too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of approximately 526 light years from the Sun.

References

  1. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 3 4 5 6 7 Selvelli, Pierluigi; Gilmozzi, Roberto (February 2019), "A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD", Astronomy & Astrophysics, 622: 16, arXiv: 1903.05868 , Bibcode:2019A&A...622A.186S, doi:10.1051/0004-6361/201834238, S2CID   119234563, A186.
  3. 1 2 Pettersen, Bjørn Ragnvald (November 2012), "Sigurd Enebo and Variable Star Research: Nova Geminorum 1912 and the RV Tauri Stars", Journal of Astronomical History and Heritage, 15 (3): 246–254, Bibcode:2012JAHH...15..246P, doi:10.3724/SP.J.1440-2807.2012.03.08, S2CID   220705971.
  4. "DN Gem". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2019-08-15.
  5. Yerkes Observatory (June 14, 1912), "Note on Nova Geminorum 1912", Monthly Notices of the Royal Astronomical Society, 72 (8): 675–676, doi: 10.1093/mnras/72.8.675 .
  6. 1 2 3 4 Retter, A.; et al. (September 1999), "An irradiation effect in Nova DN GEM 1912 and the significance of the period gap for classical novae", Monthly Notices of the Royal Astronomical Society, 308 (1): 140–146, arXiv: astro-ph/9905375 , Bibcode:1999MNRAS.308..140R, doi:10.1046/j.1365-8711.1999.02704.x, S2CID   14377631.