DM Geminorum

Last updated
DM Geminorum
DMGemLocation.png
Location of DM Geminorum (circled in red)
Observation data
Epoch J2000.0        Equinox J2000.0 (ICRS)
Constellation Gemini
Right ascension 06h 44m 12.05s [1]
Declination 29° 56 41.9 [1]
Apparent magnitude  (V)4.8v — 16.7p [1]
Characteristics
Variable type Classical Nova, Intermediate polar?
Other designations
Nova Gem 1903, DM  Gem, HD  48328, AAVSO 0637+30, HR 2472
Database references
SIMBAD data
The light curve of nova DM Geminorum, plotted from data presented by Shapley. When multiple values were listed with exactly the same time, they were averaged before plotting. DMGemLightCurve.png
The light curve of nova DM Geminorum, plotted from data presented by Shapley. When multiple values were listed with exactly the same time, they were averaged before plotting.

DM Geminorum also known as Nova Geminorum 1903 was a nova which erupted in the constellation Gemini in 1903. It was discovered by Herbert Hall Turner at the Greenwich Observatory on a Carte du Ciel photographic plate taken on 16 March 1903. Post-discovery examination of earlier photographs of the region taken at the Harvard College Observatory showed that the star was fainter than apparent magnitude 9 on 2 March 1903, and magnitude 5.1 on 6 March 1903, making it visible to the naked eye at that time. [3] It had a conspicuous red color due to strong line emission. [4] By 1 April 1903 it had faded to magnitude 8.5. [5] By 1989 it had reached visual magnitude 17.38. [6]

DM Geminorum faded from peak brightness by 2 magnitudes in just 6 days, making it a "very fast nova". [7]

All novae are binary stars, with a "donor" star orbiting a white dwarf. The two stars are so close together that matter is transferred from the donor to the white dwarf. High speed photometry done with the 1.2 meter telescope at the Whipple Observatory show a small amplitude (0.25 magnitude peak-to-peak) oscillation with a period of 2 hours and 57 minutes, which is probably the orbital period of the binary system. In addition, brightness variations with a period of 22 minutes are also seen in this star's light curve. The star's spectrum and brightness variations are similar to what is seen in intermediate polars. [8]

Related Research Articles

<span class="mw-page-title-main">V1974 Cygni</span> Star in the constellation Cygnus

V1974 Cygni or Nova Cygni 1992 was a nova, visible to the naked eye, in the constellation Cygnus. It was discovered visually with 10×50 binoculars on February 19, 1992, by Peter Collins, an amateur astronomer living in Boulder, Colorado. At that time he first noticed it, it had an apparent magnitude of 7.2. Nine hours later he saw it again, and it had brightened by a full magnitude. For this discovery Collins was awarded the AAVSO Nova Award in 1993. The nova reached magnitude 4.4 at 22:00 UT on 22 February 1992. Images from the Palomar Sky Survey taken before the nova event showed identified a possible precursor which had photographic magnitudes of 18 and 17, but the identification of the precursor is not firm.

<span class="mw-page-title-main">T Aurigae</span> Nova seen in 1891

T Aurigae was a nova, which lit up in the constellation Auriga in 1891. Thomas David Anderson, an amateur astronomer in Edinburgh, reported that he was "almost certain" he saw the nova at 02:00 UT on 24 January 1892, when it was slightly brighter than χ Aurigae. He mistook the star for 26 Aurigae, although he noted to himself that it seemed brighter than he remembered it being. He saw it twice more during the following week. On 31 January 1892 he realized his mistake, and wrote a note to Ralph Copeland reporting his discovery. Professor Copeland immediately reported the discovery via telegram to William Huggins, who made the first spectroscopic observations of T Aurigae on 2 February 1892, when the star was a magnitude 4.5 object. T Aurigae was the first nova to be observed spectroscopically.

<span class="mw-page-title-main">DI Lacertae</span> 1910 Nova in the constellation Lacerta

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. Before the nova event DI Lacertae was a 14th magnitude star, and by 1950 it had returned to 14th magnitude.

<span class="mw-page-title-main">DN Geminorum</span> Star in the constellation Gemini

DN Geminorum or Nova Geminorum 1912 was a classical nova which lit up in 1912 in the constellation Gemini. It was discovered by Norwegian variable star observer Sigurd Einbu on March 12, 1912 before reaching peak brightness, which allowed early-stage spectra to be collected by Yerkes Observatory. The nova reached a maximum brightness of around 3.5 mag before declining, which means it was visible to the naked eye. Its brightness decreased over the following 36 days by 3 magnitudes as it gradually faded from sight. The light curve saw two maxima a few months after the outburst, along with strong oscillations. Today its brightness is visual magnitude 15.5.

<span class="mw-page-title-main">V500 Aquilae</span> 1943 Nova event in the constellation Aquila

V500 Aquilae also known as Nova Aquilae 1943 was a nova which appeared in the constellation Aquila, very near the star Altair, in 1943. It was discovered by Cuno Hoffmeister on photographic plates taken at Sonneberg Observatory on 5 September 1943, when it had a photographic magnitude of 12. It reached its peak brightness sometime between 13 April 1943 when it was fainter than photographic magnitude 13.5, and 2 May 1943 when its photographic magnitude was 6.55.

<span class="mw-page-title-main">HR Lyrae</span> Nova that appeared in 1919

HR Lyrae or Nova Lyrae 1919 was a nova which occurred in the constellation Lyra in 1919. Its discovery was announced by Johanna C. Mackie on 6 December 1919. She discovered it while examining photographic plates taken at the Harvard College Observatory. The bulletin announcing the discovery states "Between December 4 and 6 it rose rapidly from the sixteenth magnitude or fainter, to a maximum of about 6.5". It was the first nova ever reported in Lyra, and Mackie was awarded the AAVSO gold medal for her discovery. Its peak magnitude of 6.5 implies that it might have been visible to the naked eye, under ideal conditions.

<span class="mw-page-title-main">V446 Herculis</span> 1960 Nova event in the constellation Hercules

V446 Herculis was a nova in the constellation Hercules in 1960. It reached magnitude 2.8. The nova was first observed by Olaf Hassel in the early morning hours of 7 March 1960, when it was a 5th magnitude star. Pre-discovery photographs showed that it was about three days past peak brightness, and had faded by 2 magnitudes during that time. The star was so near the border between the constellations of Hercules and Aquila that accurate measurements of its position were needed to determine which constellation contained it.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">QU Vulpeculae</span> 1984 Nova seen in the constellation Vulpecula

QU Vulpeculae, also known as Nova Vulpeculae 1984 Number 2, was the second nova which occurred in 1984 in the constellation Vulpecula. It was discovered by Peter Collins, an amateur astronomer from Cardiff, California at 22:08 UT on 22 December 1984. At the time of its discovery, the nova's apparent magnitude was 6.8. By the next night, Collins reported its brightness had increased to magnitude 5.6, making it visible to the naked eye.

<span class="mw-page-title-main">V1059 Sagittarii</span> Nova seen in 1898 in the constellation Sagittarius

V1059 Sagittarii was a nova, which lit up in 1898 in the constellation Sagittarius. The star reached apparent magnitude 4.5, making it easily visible to the naked eye. It was discovered on 8 March 1898, by Williamina Fleming on a photographic plate taken at the Harvard College Observatory. The discovery plate was an objective prism plate, part of the Henry Draper Memorial Photographs, and Ms Fleming identified it as a nova based on its spectral characteristics.

<span class="mw-page-title-main">U Geminorum</span> Star in the constellation Gemini

U Geminorum, in the constellation Gemini, is an archetypal example of a dwarf nova. The binary star system consists of a white dwarf closely orbiting a red dwarf. Every few months it undergoes an outburst that greatly increases its brightness. The dwarf nova class of variable stars are often referred to as U Geminorum variables after this star.

<span class="mw-page-title-main">1 Geminorum</span> Triple star system in the constellation Gemini

1 Geminorum is a star in the constellation Gemini. Its apparent magnitude is 4.15.

<span class="mw-page-title-main">XX Tauri</span> 1927 Nova seen in the constellation Taurus

XX Tauri was a nova, which appeared in the constellation Taurus in 1927. It was discovered by Arnold Schwassmann and Arno Arthur Wachmann at Hamburg Observatory on an objective prism photographic plate taken on 18 November 1927. Subsequent examination of pre-discovery photographic plates taken at the Harvard College Observatory showed that the peak brightness, magnitude 5.9, occurred on 1 October 1927, at which point it may have been faintly visible to the naked eye. By 1988 it had faded below magnitude 19.8.

<span class="mw-page-title-main">SU Ursae Majoris</span> Variable star in the constellation Ursa Major

SU Ursae Majoris, or SU UMa, is a close binary star in the northern circumpolar constellation of Ursa Major. It is a periodic cataclysmic variable that varies in magnitude from a peak of 10.8 down to a base of 14.96. The distance to this system, as determined from its annual parallax shift of 4.53 mas, is 719 light-years. It is moving further from the Earth with a heliocentric radial velocity of +27 km/s.

<span class="mw-page-title-main">V630 Sagittarii</span> Nova that appeared in 1936

V630 Sagittarii was a nova visible to the naked eye in 1936. It was discovered on 3 October 1936 by Shigeki Okabayashi of Kobe, Japan when it had an apparent magnitude of 4.5.

<span class="mw-page-title-main">V Persei</span> Nova event seen in 1887 in the constellation Perseus

V Persei, also known as Nova Persei 1887 was discovered by Williamina Fleming on a Harvard College Observatory objective-prism photograph taken on 3 November 1887. It is believed to be the first nova whose spectrum was recorded. The nova had an apparent magnitude of 9.2 at the time of discovery. Judging from the consistency of the nova's brightness after discovery, and details of the spectral lines seen, McLaughlin estimated that the nova was five or six months past peak brightness at the time of its discovery, and at its peak it was almost certainly at least as bright as 4th magnitude. So V Persei was probably visible to the naked eye, though there is no record that anyone actually noticed it when that was possible. It is currently an 18th magnitude object.

<span class="mw-page-title-main">QZ Aurigae</span> Nova seen in 1964

QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.

<span class="mw-page-title-main">GI Monocerotis</span> 1918 Nova in the constellation Monoceros

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.

<span class="mw-page-title-main">WY Sagittae</span> 1783 Nova seen in the constellation Sagitta

WY Sagittae, also known as Nova Sagittae 1783, is a star in the constellation Sagitta which had a nova eruption visible in 1783. It was discovered on 26 July 1783 by the French astronomer Joseph Lepaute D'Agelet. It is usually difficult to precisely identify novae that were discovered hundreds of years ago, because the positions were often vaguely reported and historically there was not a clear distinction drawn between different sorts of transient astronomical events such as novae and comet apparitions. However D'Agelet observed this nova with a mural quadrant, which produced coordinates accurate enough to allow modern astronomers to identify the star. D'Agelet reported the apparent magnitude of the star as 6, but Benjamin Apthorp Gould, who analysed D'Agelet's records, determined that what D'Agelet called magnitude 6 corresponds to magnitude 5.4 ± 0.4 on the modern magnitude scale, so the nova was visible to the naked eye.

<span class="mw-page-title-main">OY Arae</span> 1910 nova in the constellation Ara

OY Arae, also known as Nova Arae 1910, is a nova in the constellation Ara. It was discovered by Williamina Fleming on a Harvard Observatory photographic plate taken on April 4, 1910. At that time it had a magnitude of 6.0, making it faintly visible to the naked eye under ideal observing conditions. Examination of earlier plates showed that before the outburst it was a magnitude 17.5 object, and by March 19, 1910, it had reached magnitude 12.

References

  1. 1 2 3 Downes, Ronald; Webbink, Ronald F.; Shara, Michael M. (April 1997). "A Catalog and Atlas of Cataclysmic Variables-Second Edition". Publications of the Astronomical Society of the Pacific. 109: 345. Bibcode:1997PASP..109..345D. doi: 10.1086/133900 . S2CID   120396435.
  2. Shapley, Harlow (January 1933). "The photographic light curves of 11 novae". Annals of the Astronomical Observatory of Harvard College. 84 (5): 121–155. Bibcode:1933AnHar..84..121S . Retrieved 22 January 2021.
  3. Duerbeck, Hilmar W. (March 1987). "A Reference Catalogue and Atlas of Galactic Novae". Space Science Reviews. 45 (1–2): 1–14. Bibcode:1987SSRv...45....1D. doi:10.1007/BF00187826. S2CID   115854775 . Retrieved 23 December 2020.
  4. Hale, G.E. (May 1903). "The new star in Gemini". The Astrophysical Journal. 17: 300–305. Bibcode:1903ApJ....17..300H. doi:10.1086/141029 . Retrieved 23 December 2020.
  5. Reese, H.M.; Curtis, H.D. (November 1903). "The spectrum of Nova Geminorum". The Astrophysical Journal. 18: 299–306. Bibcode:1903ApJ....18..299R. doi:10.1086/141071 . Retrieved 23 December 2020.
  6. Szkody, Paula (August 1994). "BVRGK Observations of Northern Hemisphere Old Novae". The Astronomical Journal. 108: 639. Bibcode:1994AJ....108..639S. doi:10.1086/117098 . Retrieved 23 December 2020.
  7. Schmidt, Theodor (January 1957). "Die Lichtkurven-Leuchtkraft-Beziehung Neuer Sterne. Mit 8 Textabbildungen". Zeitschrift für Astrophysik. 41: 182. Bibcode:1957ZA.....41..182S.
  8. Rodríguez-Gil, P.; Torres, M.A.P. (February 2005). "Time-resolved photometry of the nova remnants". Astronomy and Astrophysics. 431: 289–296. arXiv: astro-ph/0410348 . Bibcode:2005A&A...431..289R. doi: 10.1051/0004-6361:20041112 .