Galdieria partita

Last updated

Galdieria partita
Galdieria partita TEM.jpg
Galdieria partita cell. n: nucleus; c: chloroplast
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Archaeplastida
Division: Rhodophyta
Class: Cyanidiophyceae
Order: Cyanidiales
Family: Galdieriaceae
Genus: Galdieria
Species:
G. partita
Binomial name
Galdieria partita
O.Yu.Sentsova, 1991

Galdieria partita is a species of extremophilic red algae that lives in acidic hot springs. [1] It is the only unicellular species of red algae known to reproduce sexually. [2] It was discovered in 1894 by Josephine Elizabeth Tilden from Yellowstone National Park in the western United States. [3] Originally described as a specides of green algae, Chroococcus varium, its scientific name and taxonomic position were revised several times. In 1959, Mary Belle Allen produced the pure culture which has been distributed as the "Allen strain". [4]

Contents

History

Josephine Elizabeth Tilden, the first woman teacher at the University of Minnesota, investigated algae of the Yellowstone National Park in Wyoming in 1894. [3] Among her collection was a species which she identified as a green alga. In 1898, she named it Protococcus botryoides f. caldarium. [5] Austrian biologists Lothar Geitler and Franz Ruttner revised the identification as a blue-green algae with a name Cyanidium caldarium in 1936. [6] Around the same time Joseph J. Copeland created the genus name as Pluto caldarius. [7] The controversy of priority started, but Cyanidium caldarium became more widely used. [6]

Mary Belle Allen, while working at the Marine Station of Stanford University, had developed the method of culturing microbes living at high temperature (thermophiles). [8] In 1952, she developed a specific culture media for thermophilic algae by which she isolated an "unidentified unicellular alga" from the acid waters of the Lemonade Spring, The Geysers, Sonoma County, California. [9] In 1958, while working at the Laboratory of Comparative Physiology and Morphology of the Kaiser Foundation Research Institute in Richmond, California, she compared the thermophilic algae of the Lemonade Spring with those of the Yellowstone National Park. With it she produced the first pure culture of the C. caldarium, as reported in 1959. [10] This sample was subsequently distributed as the "Allen strain". [4]

In 1991, Olga Yu Sentsova at the Moscow State University, analysed the specimen of Allan strain with a new one collected from Kamchatka Peninsula in Russia Far East. [11] She confirmed that the specimens were distinct from other C. caldarium and revised the identification as Galdieria partita, along with a description of two other new species, G. daedala and G. maxima. [12] The genus Galdieria was established by an Italian botanist Aldo Merola in 1981 for the identification of a red alga, G. sulphuraria. [13] [14]

Habitat

G. partita is an thermoacidophile that survives well in high temperature and high acidic environments. They are present in hot springs of the Yellowstone National Park in US, Kamchatka Peninsula in Russia Far East, [11] and the Tatun Volcanic Group area in Taiwan. [15] The hot springs of the Yellowstone National Park has high acidity with a pH ranging from 2.5 to 3, and a temperature ranging from 28 to 90°C. [16] [17] The Kamchatka hot springs can have a pH as low as 1.5 and temperatures from 50 to 99°C. [18]

Structure and composition

Galdieria partita cells under various growth conditions. c: chloroplast; glu: glucose; HL: high light source; LL: low light source; n: nucleus. Galdieria partita cells.jpg
Galdieria partita cells under various growth conditions. c: chloroplast; glu: glucose; HL: high light source; LL: low light source; n: nucleus.

G. partita is unicellular with a rigid cell wall. [10] It is spherical in shape and measures 2.5 to 8 μm in diameter. The Allen strain is slightly bigger under culture as it can grow to 10 to 11 μm in size. [11] There is single mitochondrion with a crescent shape, and a single vacuole. [14] It contains prominent nucleus and the rest of the cytoplasm is much occupied by a single chloroplast. [10] The chloroplast is belt-shaped in young individuals and becomes four-lobed in mature cells. [11]

It is for the prominent presence of chloroplast that it was once argued to be member of the green algae and blue-green algae. It requires light to produce chlorophyll and phycocyanin, while green algae and blue-green algae do not. [10] It was difficult to recognise as a red alga because of the presence of a purple pigment phycocyanin, as red algae are normally characterised by phycobilins (phycocyanobilin, phycoerythrobilin, phycourobilin and phycobiliviolin), pigments that give the distinctive red or orange colour. [19] [20]

Biochemistry

G. partita is a facultative heterotroph that feeds on various nutrients mostly under low light environment, [21] but can grow well in under sunlight, unlike other Galdieria species. [15] It mostly uses citric acid as its nutrient source for carbon and energy. [11] Environmental glucose level facilitates protection from oxidative stress by stimulating the biosynthesis of ascorbic acid. [21]

Reproduction

Asexual reproduction is achieved by spore (endospore) formation. The mother cell divides internally and the daughter cells are released after rupture of the mother cell wall. [10] The chloroplast divides first and then the nucleus afterwards. [14] The daughter cells are called autospores and divide into cell numbers 2 to 4 to 8. [11]

Related Research Articles

<span class="mw-page-title-main">Algae</span> Diverse group of photosynthetic eukaryotic organisms

Algae is an informal term for a large and diverse group of photosynthetic, eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular microalgae, such as Chlorella, Prototheca and the diatoms, to multicellular forms, such as the giant kelp, a large brown alga which may grow up to 50 metres (160 ft) in length. Most are aquatic and lack many of the distinct cell and tissue types, such as stomata, xylem and phloem that are found in land plants. The largest and most complex marine algae are called seaweeds, while the most complex freshwater forms are the Charophyta, a division of green algae which includes, for example, Spirogyra and stoneworts. Algae that are carried by water are plankton, specifically phytoplankton.

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in the cells. The ATP and NADPH is then used to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch, glycogen and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Plastid</span> Plant cell organelles that perform photosynthesis and store starch

The plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosymbiotic cyanobacteria. Examples include chloroplasts, chromoplasts, and leucoplasts.

<span class="mw-page-title-main">Brown algae</span> Large group of multicellular algae, comprising the class Phaeophyceae

Brown algae, comprising the class Phaeophyceae, are a large group of multicellular algae, including many seaweeds located in colder waters within the Northern Hemisphere. Brown algae are the major seaweeds of the temperate and polar regions. They are dominant on rocky shores throughout cooler areas of the world. Most brown algae live in marine environments, where they play an important role both as food and as a potential habitat. For instance, Macrocystis, a kelp of the order Laminariales, may reach 60 m (200 ft) in length and forms prominent underwater kelp forests. Kelp forests like these contain a high level of biodiversity. Another example is Sargassum, which creates unique floating mats of seaweed in the tropical waters of the Sargasso Sea that serve as the habitats for many species. Many brown algae, such as members of the order Fucales, commonly grow along rocky seashores. Some members of the class, such as kelps, are used by humans as food.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group consisting of the Prasinodermophyta and its unnamed sister which contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae. Many species live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<i>Chlamydomonas reinhardtii</i> Species of alga

Chlamydomonas reinhardtii is a single-cell green alga about 10 micrometres in diameter that swims with two flagella. It has a cell wall made of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an eyespot that senses light.

<span class="mw-page-title-main">Charophyta</span> Phylum of algae

Charophyta is a group of freshwater green algae, called charophytes, sometimes treated as a division, yet also as a superdivision or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes, with the class Zygnematophyceae as a sister group.

<span class="mw-page-title-main">Phycocyanin</span> Protein complexes in algae

Phycocyanin is a pigment-protein complex from the light-harvesting phycobiliprotein family, along with allophycocyanin and phycoerythrin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water-soluble, so they cannot exist within the membrane like carotenoids can. Instead, phycobiliproteins aggregate to form clusters that adhere to the membrane called phycobilisomes. Phycocyanin is a characteristic light blue color, absorbing orange and red light, particularly near 620 nm, and emits fluorescence at about 650 nm. Allophycocyanin absorbs and emits at longer wavelengths than phycocyanin C or phycocyanin R. Phycocyanins are found in cyanobacteria. Phycobiliproteins have fluorescent properties that are used in immunoassay kits. Phycocyanin is from the Greek phyco meaning “algae” and cyanin is from the English word “cyan", which conventionally means a shade of blue-green and is derived from the Greek “kyanos" which means a somewhat different color: "dark blue". The product phycocyanin, produced by Aphanizomenon flos-aquae and Spirulina, is for example used in the food and beverage industry as the natural coloring agent 'Lina Blue' or 'EXBERRY Shade Blue' and is found in sweets and ice cream. In addition, fluorescence detection of phycocyanin pigments in water samples is a useful method to monitor cyanobacteria biomass.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<i>Chlamydomonas nivalis</i> Species of alga

Chlamydomonas nivalis, also referred to as Chloromonas typhlos, is a unicellular red-coloured photosynthetic green alga that is found in the snowfields of the alps and polar regions all over the world. They are one of the main algae responsible for causing the phenomenon of watermelon snow, where patches of snow appear red or pink. The first account of microbial communities that form red snow was made by Aristotle. Researchers have been active in studying this organism for over 100 years.

<span class="mw-page-title-main">Eyespot apparatus</span>

The eyespot apparatus is a photoreceptive organelle found in the flagellate or (motile) cells of green algae and other unicellular photosynthetic organisms such as euglenids. It allows the cells to sense light direction and intensity and respond to it, prompting the organism to either swim towards the light, or away from it. A related response occurs when cells are briefly exposed to high light intensity, causing the cell to stop, briefly swim backwards, then change swimming direction. Eyespot-mediated light perception helps the cells in finding an environment with optimal light conditions for photosynthesis. Eyespots are the simplest and most common "eyes" found in nature, composed of photoreceptors and areas of bright orange-red red pigment granules. Signals relayed from the eyespot photoreceptors result in alteration of the beating pattern of the flagella, generating a phototactic response.

<i>Micromonas</i> Genus of algae

Micromonas is a genus of green algae in the family Mamiellaceae.

<span class="mw-page-title-main">Red algae</span> Division of plant life

Red algae, or Rhodophyta, are one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater environments, with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

<i>Cyanidioschyzon</i> Species of alga

Cyanidioschyzon merolae is a small (2μm), club-shaped, unicellular haploid red alga adapted to high sulfur acidic hot spring environments. The cellular architecture of C. merolae is extremely simple, containing only a single chloroplast and a single mitochondrion and lacking a vacuole and cell wall. In addition, the cellular and organelle divisions can be synchronized. For these reasons, C. merolae is considered an excellent model system for study of cellular and organelle division processes, as well as biochemistry and structural biology. The organism's genome was the first full algal genome to be sequenced in 2004; its plastid was sequenced in 2000 and 2003, and its mitochondrion in 1998. The organism has been considered the simplest of eukaryotic cells for its minimalist cellular organization.

Prochloron is a genus of unicellular oxygenic photosynthetic prokaryotes commonly found as an extracellular symbiont on coral reefs, particularly in didemnid ascidians. Part of the phylum cyanobacteria, it was theorized that Prochloron is a predecessor of the photosynthetic components, chloroplasts, found in photosynthetic eukaryotic cells. However this theory is largely refuted by phylogenetic studies which indicate Prochloron is not on the same line of descent that lead to chloroplast-containing algae and land plants.

Galdieria sulphuraria is an extremophilic unicellular species of red algae. It is the type species of the genus Galdieria. It is known for its broad metabolic capacities, including photosynthesis and heterotrophic growth on over 50 different extracellular carbon sources. The members of the class Cyanidiophyceae are among the most acidophilic known photosynthetic organisms, and the growth conditions of G. sulphuraria – pH between 0 and 4, and temperatures up to 56 °C – are among the most extreme known for eukaryotes. Analysis of its genome suggests that its thermoacidophilic adaptations derive from horizontal gene transfer from archaea and bacteria, another rarity among eukaryotes.

<span class="mw-page-title-main">Floridean starch</span> Type of storage glucan

Floridean starch is a type of a storage glucan found in glaucophytes and in red algae, in which it is usually the primary sink for fixed carbon from photosynthesis. It is found in grains or granules in the cell's cytoplasm and is composed of an α-linked glucose polymer with a degree of branching intermediate between amylopectin and glycogen, though more similar to the former. The polymers that make up floridean starch are sometimes referred to as "semi-amylopectin".

Galdieria is a genus of red algae belonging to the family Galdieriaceae. It was created by an Italian botanist Aldo Merola in 1981 for the identification from the species of Cyanidium.

<span class="mw-page-title-main">Mary Belle Allen</span> American biochemist

Mary Belle Allen was an American botanist, chemist, mycologist, algologist, and plant pathologist, and a pioneer of biochemical microbiology. With Daniel I. Arnon and F. Robert Whatley, she did breakthrough research discovering and demonstrating the role of chloroplasts in photosynthesis. In 1962 she received the Darbaker Prize from the Botanical Society of America for her work on microbial algae. In 1967 she was nominated jointly with Arnon and Whatley for a Nobel Prize.

References

  1. Sano, S.; Ueda, M.; Kitajima, S.; Takeda, T.; Shigeoka, S.; Kurano, N.; Miyachi, S.; Miyake, C.; Yokota, A. (2001). "Characterization of ascorbate peroxidases from unicellular red alga Galdieria partita". Plant & Cell Physiology. 42 (4): 433–440. doi: 10.1093/pcp/pce054 . ISSN   0032-0781. PMID   11333315.
  2. Hirooka, Shunsuke; Itabashi, Takeshi; Ichinose, Takako M.; Onuma, Ryo; Fujiwara, Takayuki; Yamashita, Shota; Jong, Lin Wei; Tomita, Reiko; et al. (2022). "Life cycle and functional genomics of the unicellular red alga Galdieria for elucidating algal and plant evolution and industrial use". Proceedings of the National Academy of Sciences. 119 (41): e2210665119. doi: 10.1073/pnas.2210665119 . ISSN   0027-8424. PMC   9565259 . PMID   36194630.
  3. 1 2 Hansen, Gayle I. (1996). "Josephine Elizabeth Tilden (1869-1957)". In Garbary, David J.; Wynne, Michael James (eds.). Prominent Phycologists of the 20th Century. Lancelot Press. pp. 185–186. ISBN   978-0-88999-636-6.
  4. 1 2 Seckbach, Joseph (1991). "Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular biology studies" . Journal of Phycology. 27 (6): 794–796. doi:10.1111/j.0022-3646.1991.00794.x. ISSN   0022-3646. S2CID   84476554.
  5. Tilden, Josephine E. (1898). "Observations on Some West American Thermal Algæ". Botanical Gazette. 25 (2): 89–105. doi: 10.1086/327640 . ISSN   0006-8071. JSTOR   2464465.
  6. 1 2 Brock, Thomas D. (1978), "The Genus Cyanidium", Thermophilic Microorganisms and Life at High Temperatures, Springer Series in Microbiology, New York, NY: Springer New York, pp. 255–302, doi:10.1007/978-1-4612-6284-8_9, ISBN   978-1-4612-6286-2 , retrieved 2022-10-24
  7. Copeland, Joseph J. (1936). "Yellowstone thermal myxophyceae". Annals of the New York Academy of Sciences. 36 (1): 4–223. doi:10.1111/j.1749-6632.1936.tb56976.x. S2CID   128571314.
  8. Allen, Mary Belle (1 June 1953). "The thermophilic aerobic sporeforming bacteria". Bacteriological Reviews. 17 (2): 125–173. doi:10.1128/br.17.2.125-173.1953. PMC   180763 . PMID   13058821.
  9. Allen, M. B. (1 January 1952). "The cultivation of myxophyceae". Archiv für Mikrobiologie. 17 (1): 34–53. doi:10.1007/BF00410816. ISSN   1432-072X. S2CID   20787061.
  10. 1 2 3 4 5 Allen, Mary Belle (1959). "Studies with cyanidium caldarium, an anomalously pigmented chlorophyte". Archiv für Mikrobiologie. 32 (3): 270–277. doi:10.1007/BF00409348. ISSN   0302-8933. PMID   13628094. S2CID   1804474.
  11. 1 2 3 4 5 6 Sentsova, O. Yu. (1994). "The study of Cyanidiophyceae in Russia". In Seckbach, Joseph (ed.). Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Dordrecht: Springer Netherlands. pp. 167–174. doi:10.1007/978-94-011-0882-9. ISBN   978-94-010-4381-6. S2CID   46232620.
  12. Sentsova, O. Yu (1991). "Diversity of acido thermophilic unicellular algae of the genus galdieria rhodophyta cyanidiophyceae". Botanicheskii Zhurnal (St Petersburg). 76 (1): 69–79.
  13. Merola, Aldo; Castaldo, Rosa; Luca, Paolo De; Gambardella, Raffaele; Musacchio, Aldo; Taddei, Roberto (1981). "Revision of Cyanidium caldarium. Three species of acidophilic algae". Giornale Botanico Italiano. 115 (4–5): 189–195. doi:10.1080/11263508109428026. ISSN   0017-0070.
  14. 1 2 3 Albertano, P.; Ciniglia, C.; Pinto, G.; Pollio, A. (2000). "The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update". Hydrobiologia. 433 (1/3): 137–143. doi:10.1023/A:1004031123806. S2CID   11634959.
  15. 1 2 Hsieh, Chia-Jung; Zhan, Shing Hei; Lin, Yiching; Tang, Sen-Lin; Liu, Shao-Lun (2015). Vis, M. (ed.). "Analysis of rbc L sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales)". Journal of Phycology. 51 (4): 682–694. doi:10.1111/jpy.12310. PMID   26986790. S2CID   26833023.
  16. Munson-McGee, Jacob H.; Field, Erin K.; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas; Young, Mark J. (2015). "Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs". Applied and Environmental Microbiology. 81 (22): 7860–7868. doi:10.1128/AEM.01539-15. PMC   4616950 . PMID   26341207.
  17. Santos, Ricardo; Fernandes, João; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela (2007). "Mycobacterium parascrofulaceum in acidic hot springs in Yellowstone National Park". Applied and Environmental Microbiology. 73 (15): 5071–5073. doi:10.1128/AEM.00353-07. PMC   1951044 . PMID   17557859.
  18. Kompanichenko, Vladimir N. (2019). "Exploring the Kamchatka Geothermal Region in the Context of Life's Beginning". Life. 9 (2): E41. doi: 10.3390/life9020041 . PMC   6616967 . PMID   31100955.
  19. O'Carra, P; Murphy, R F; Killilea, S D (1980). "The native forms of the phycobilin chromophores of algal biliproteins. A clarification". Biochemical Journal. 187 (2): 303–309. doi:10.1042/bj1870303. ISSN   0264-6021. PMC   1161794 . PMID   7396851.
  20. D’Alessandro, Emmanuel B.; Antoniosi Filho, Nelson R. (2016). "Concepts and studies on lipid and pigments of microalgae: A review". Renewable and Sustainable Energy Reviews. 58 (1): 832–841. doi:10.1016/j.rser.2015.12.162.
  21. 1 2 Fu, Han-Yi; Liu, Shao-Lun; Chiang, Yin-Ru (2019). "Biosynthesis of Ascorbic Acid as a Glucose-Induced Photoprotective Process in the Extremophilic Red Alga Galdieria partita". Frontiers in Microbiology. 10: 3005. doi: 10.3389/fmicb.2019.03005 . ISSN   1664-302X. PMC   6971183 . PMID   31993036.