Gene Designer

Last updated
Gene Designer
Developer(s) ATUM
Initial release2006;17 years ago (2006)
Stable release
2.01.191 / October 9, 2015;8 years ago (2015-10-09)
Operating system Windows, macOS, Linux
Platform x86, x86-64
Available inEnglish
Type Molecular biology toolkit
License Freeware, registration required
Website www.atum.bio/resources/tools/gene-designer

Gene Designer is a computer software package for bioinformatics. [1] [2] It is used by molecular biologists from academia, government, and the pharmaceutical, chemical, agricultural, and biotechnology industries to design, [3] clone, and validate genetic sequences. It is proprietary software, released as freeware needing registration.

Contents

Features

Gene Designer enables molecular biologists to manage the full gene design process in one application, using a range of design tools.

Gene Designer clones with a drag and drop feature. Users can drag a vector and insert into the Cloning Tool; cut, combine and clone. Gene Designer assembles a clone that can then be dropped directly into a project. GD2Back.jpg
Gene Designer clones with a drag and drop feature. Users can drag a vector and insert into the Cloning Tool; cut, combine and clone. Gene Designer assembles a clone that can then be dropped directly into a project.

Educator and student use

This free software has been incorporated into classroom and lab curricula for synthetic biology, systems biology, bioengineering, and bioinformatics. Students create and complete projects which manage the full gene design process in one application, using a range of design tools.

Examples of use in curricula:

See also

Related Research Articles

<span class="mw-page-title-main">Yeast artificial chromosome</span> Genetically engineered chromosome derived from the DNA of yeast

Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking. This is the process that was initially used for the Human Genome Project, however due to stability issues, YACs were abandoned for the use of bacterial artificial chromosome

<span class="mw-page-title-main">Library (biology)</span>

In molecular biology, a library is a collection of DNA fragments that is stored and propagated in a population of micro-organisms through the process of molecular cloning. There are different types of DNA libraries, including cDNA libraries, genomic libraries and randomized mutant libraries. DNA library technology is a mainstay of current molecular biology, genetic engineering, and protein engineering, and the applications of these libraries depend on the source of the original DNA fragments. There are differences in the cloning vectors and techniques used in library preparation, but in general each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria or yeast such that each organism contains on average one construct. As the population of organisms is grown in culture, the DNA molecules contained within them are copied and propagated.

A DNA construct is an artificially-designed segment of DNA borne on a vector that can be used to incorporate genetic material into a target tissue or cell. A DNA construct contains a DNA insert, called a transgene, delivered via a transformation vector which allows the insert sequence to be replicated and/or expressed in the target cell. This gene can be cloned from a naturally occurring gene, or synthetically constructed. The vector can be delivered using physical, chemical or viral methods. Typically, the vectors used in DNA constructs contain an origin of replication, a multiple cloning site, and a selectable marker. Certain vectors can carry additional regulatory elements based on the expression system involved.

This page provides an alphabetical list of articles and other pages about biotechnology.

Artificial gene synthesis, or simply gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides de novo. Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory. It comprises two main steps, the first of which is solid-phase DNA synthesis, sometimes known as DNA printing. This produces oligonucleotide fragments that are generally under 200 base pairs. The second step then involves connecting these oligonucleotide fragments using various DNA assembly methods. Because artificial gene synthesis does not require template DNA, it is theoretically possible to make a completely synthetic DNA molecule with no limits on the nucleotide sequence or size.

<span class="mw-page-title-main">Christopher Voigt</span>

Christopher Voigt is an American synthetic biologist, molecular biophysicist, and engineer.

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.

<span class="mw-page-title-main">Joachim Messing</span> German-American biologist (1946–2019)

Joachim Wilhelm "Jo" Messing was a German-American biologist who was a professor of molecular biology and the fourth director of the Waksman Institute of Microbiology at Rutgers University.

<span class="mw-page-title-main">UGENE</span>

UGENE is computer software for bioinformatics. It works on personal computer operating systems such as Windows, macOS, or Linux. It is released as free and open-source software, under a GNU General Public License (GPL) version 2.

OLIGO Primer Analysis Software is a software for DNA primer design. The first paper describing this software was published in 1989. The program is a real time PCR primer and probe search and analysis tool, in addition to siRNA and molecular beacon searches, open reading frame, restriction enzyme analysis. It was created and maintained by Wojciech Rychlik and Piotr Rychlik.

Clone Manager is a commercial bioinformatics software work suite of Sci-Ed, that supports molecular biologists with data management and allows them to perform certain in silico preanalysis.

<span class="mw-page-title-main">Molecular cloning</span> Set of methods in molecular biology


Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

GenoCAD is one of the earliest computer assisted design tools for synthetic biology. The software is a bioinformatics tool developed and maintained by GenoFAB, Inc.. GenoCAD facilitates the design of protein expression vectors, artificial gene networks and other genetic constructs for genetic engineering and is based on the theory of formal languages.

<span class="mw-page-title-main">In silico PCR</span>

In silico PCR refers to computational tools used to calculate theoretical polymerase chain reaction (PCR) results using a given set of primers (probes) to amplify DNA sequences from a sequenced genome or transcriptome.

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

<span class="mw-page-title-main">In vitro recombination</span> Process of isolation and amplification of DNA segments

Recombinant DNA (rDNA), or molecular cloning, is the process by which a single gene, or segment of DNA, is isolated and amplified. Recombinant DNA is also known as in vitro recombination. A cloning vector is a DNA molecule that carries foreign DNA into a host cell, where it replicates, producing many copies of itself along with the foreign DNA. There are many types of cloning vectors such as plasmids and phages. In order to carry out recombination between vector and the foreign DNA, it is necessary the vector and DNA to be cloned by digestion, ligase the foreign DNA into the vector with the enzyme DNA ligase. And DNA is inserted by introducing the DNA into bacteria cells by transformation.

<span class="mw-page-title-main">Infologs</span>

Infologs are independently designed synthetic genes derived from one or a few genes where substitutions are systematically incorporated to maximize information. Infologs are designed for perfect diversity distribution to maximize search efficiency.

<span class="mw-page-title-main">Golden Gate Cloning</span> Molecular cloning method for DNA assembly

Golden Gate Cloning or Golden Gate assembly is a molecular cloning method that allows a researcher to simultaneously and directionally assemble multiple DNA fragments into a single piece using Type IIS restriction enzymes and T4 DNA ligase. This assembly is performed in vitro. Most commonly used Type IIS enzymes include BsaI, BsmBI, and BbsI.

Vector NTI was a commercial bioinformatics software package used by many life scientists in the early 2000s to work, among other things, with nucleic acids and proteins in silico. It allowed researchers to, for example, plan a DNA cloning experiment on the computer before actually performing it in the lab.

ATUM is an American biotechnology company which provides tools for the life sciences, from design and synthesis of optimized DNA to protein production and GMP cell line development.

References

  1. Villalobos, Alan; Ness, Jon E; Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar (2006). "Gene Designer: A synthetic biology tool for constructing artificial DNA segments". BMC Bioinformatics. 7: 285. doi: 10.1186/1471-2105-7-285 . PMC   1523223 . PMID   16756672.
  2. Villalobos, Alan; Welch, Mark; Minshull, Jeremy (2012). "In Silico Design of Functional DNA Constructs". In Peccoud, Jean (ed.). Gene Synthesis: Methods and Protocols. Methods in Molecular Biology. Vol. 852. pp. 197–213. doi:10.1007/978-1-61779-564-0_15. ISBN   978-1-61779-563-3. PMID   22328435.
  3. Welch, M; Villalobos, A; Gustafsson, C; Minshull, J (2011). "Designing genes for successful protein expression". In Voigt, Christopher (ed.). Synthetic Biology, Part B: Computer Aided Design and DNA Assembly. Methods in Enzymology. Vol. 498. pp. 43–66. doi:10.1016/B978-0-12-385120-8.00003-6. ISBN   9780123851208. PMID   21601673.
  4. http://www.engr.usu.edu/wiki/index.php/Synthetic_Biophotonics_2010%5B%5D
  5. http://www.engr.usu.edu/wiki/index.php/Synthetic_Biophotonics_2010_Systems_Biology_Laboratory%5B%5D
  6. http://www.engr.usu.edu/wiki/index.php/Synthetic_Biophotonics_2010_Systems_Biology%5B%5D
  7. http://www.engr.usu.edu/wiki/index.php/Synthetic_Biophotonics_2010_Synthetic_Biology%5B%5D
  8. http://www.engr.usu.edu/wiki/index.php/Synthetic_Biophotonics_2010_Student_Projects%5B%5D