Generalized arterial calcification of infancy

Last updated
Generalized arterial calcification of infancy
Other namesIdiopathic infantile arterial calcification (IIAC), arterial calcification of infancy, idiopathic arterial calcification of infancy (IACI), occlusive infantile arterial calcification, occlusive infantile arteriopathy [1]
Specialty Medical genetics

Generalized arterial calcification of infancy (GACI) is an extremely rare [2] genetic disorder. It is caused by mutations in the ENPP1 gene in 75% of the subjects [3] or in mutations in the ABCC6 genes in 10% of patients. [4] However, sometimes individuals affected with GACI do not have mutations in the ENPP1 or ABCC6 gene and in those cases the cause of the disorder is unknown. [4]

Contents

The condition usually affects infants during the first 6 months of life. This condition is inherited as an autosomal recessive pattern. It is characterized by generalized calcification of the arterial internal elastic lamina, leading to rupture of the lamina and occlusive changes in the tunica intima with stenosis and decreased elasticity of the vessel wall. [5] Unfortunately, many infants die of vaso-occlusive disease, especially of the coronary arteries. [6]

There are 2 forms of GACI that can be indicated on a genetic test:

GACI Type 1 is caused by mutations in the ENPP1 gene. It is called ENPP1 Deficiency. Patients with the ENPP1 Deficiency are at risk of developing Autosomal Recessive Hypophosphatemic Rickets Type 2 (ARHR2).  ARHR2 can cause weakening in the bones, pain in bones and joints bone deformities (knocked knees, bowed legs), dental problems, calcification of ligaments and short stature. With proper treatment the bones can be strengthened and side effects minimized. [7] [8] [9]

GACI Type 2 is caused by mutations in the ABCC6 gene. It is called ABCC6 Deficiency. As children affected by GACI due to ABCC6 Deficiency get older, they can develop characteristics similar to pseudoxanthoma elasticum (PXE). This condition affects the elastic tissue of the skin, the eye, cardiovascular and gastrointestinal systems. [7] [8] [9]

Signs and symptoms

Clinical presentation is variable. First symptoms usually occur at birth but can take place in the first 6 months of life or in utero. [2]

Clinical Signs for GACI can include:

Cause

GACI is inherited in an autosomal recessive pattern. Autorecessive en 01.png
GACI is inherited in an autosomal recessive pattern.

The condition results from an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1 gene) or the ATP-binding C member 6 (ABBC6 gene), leading to decreased inorganic pyrophosphate (PPi). [7] This is a potent inhibitor of calcium deposition in the vessel wall. These mutations allow for unregulated calcium deposition within muscular arteries. The symptoms are caused by calcification of large and medium-sized arteries, including the aorta, coronary arteries, and renal arteries.[ citation needed ]

Recently, homozygous or compound heterozygous mutations for ENPP1 gene were reported as causative for the disorder. ENPP1 regulates extracellular inorganic pyrophosphate (PPi), a major inhibitor of extracellular matrix calcification. [16]

The critical period for babies affected by GACI is during the first 6 months after birth. This is due to calcium continuing to build up in the artery walls. If blood flow becomes restricted it can become life threatening. [7]

GACI affects males and females equally and occurs in populations all across the world. It is estimated to occur in approximately 1 out of every 391,000 births with the carrier rate being 1:312. Survival statistics vary greatly. [7]

Diagnosis

Generalized arterial calcification of infancy should always be considered in infants and children presenting with hypertension, cardiac failure, or sudden death. [17] Plain radiography, [18] sonography [19] and MRI [20] can aid in the diagnosis. Postnatal gray-scale and color Doppler echocardiographic and sonographic examinations allowed noninvasive diagnosis, assessment of severity, and monitoring of progression. [21] Contrast-enhanced MR angiography with breath-hold and cardiac gating techniques can allow evaluation of the extent of the disease. [22]

Prevention

Treatment

Prognosis

Research

In 2015, Demetrios Braddock, MD, PhD, a pathologist and professor from Yale University along with his team published an article in Nature Communications. [49] Their research revealed when mice with GACI were given a replacement version of the enzyme, it helped to reduce the calcifications and prevented the animals from dying. [49] [50] [51] This discovery has led to the development of Inozyme Pharma [51] [9] a biotechnology company developing new medicines to treat rare disorders of calcification including GACI. [52]

See also

Related Research Articles

<span class="mw-page-title-main">Cardiology</span> Branch of medicine dealing with the heart

Cardiology is the study of the heart. Cardiology is a branch of medicine that deals with disorders of the heart and the cardiovascular system. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease, and electrophysiology. Physicians who specialize in this field of medicine are called cardiologists, a specialty of internal medicine. Pediatric cardiologists are pediatricians who specialize in cardiology. Physicians who specialize in cardiac surgery are called cardiothoracic surgeons or cardiac surgeons, a specialty of general surgery.

<span class="mw-page-title-main">Aneurysm</span> Bulge in the wall of a blood vessel

An aneurysm is an outward bulging, likened to a bubble or balloon, caused by a localized, abnormal, weak spot on a blood vessel wall. Aneurysms may be a result of a hereditary condition or an acquired disease. Aneurysms can also be a nidus for clot formation (thrombosis) and embolization. As an aneurysm increases in size, the risk of rupture, which leads to uncontrolled bleeding, increases. Although they may occur in any blood vessel, particularly lethal examples include aneurysms of the Circle of Willis in the brain, aortic aneurysms affecting the thoracic aorta, and abdominal aortic aneurysms. Aneurysms can arise in the heart itself following a heart attack, including both ventricular and atrial septal aneurysms. There are congenital atrial septal aneurysms, a rare heart defect.

<span class="mw-page-title-main">Cyanosis</span> Decreased oxygen in the blood

Cyanosis is the change of body tissue color to a bluish-purple hue, as a result of decrease in the amount of oxygen bound to the hemoglobin in the red blood cells of the capillary bed. Cyanosis is apparent usually in the body tissues covered with thin skin, including the mucous membranes, lips, nail beds, and ear lobes. Some medications may cause discoloration such as medications containing amiodarone or silver. Furthermore, mongolian spots, large birthmarks, and the consumption of food products with blue or purple dyes can also result in the bluish skin tissue discoloration and may be mistaken for cyanosis. Appropriate physical examination and history taking is a crucial part to diagnose cyanosis. Management of cyanosis involves treating the main cause, as cyanosis isn’t a disease, it is a symptom.

<span class="mw-page-title-main">Vascular surgery</span> Medical specialty, operative procedures for the treatment of vascular disorders

Vascular surgery is a surgical subspecialty in which vascular diseases involving the arteries, veins, or lymphatic vessels, are managed by medical therapy, minimally-invasive catheter procedures and surgical reconstruction. The specialty evolved from general and cardiovascular surgery where it refined the management of just the vessels, no longer treating the heart or other organs. Modern vascular surgery includes open surgery techniques, endovascular techniques and medical management of vascular diseases - unlike the parent specialities. The vascular surgeon is trained in the diagnosis and management of diseases affecting all parts of the vascular system excluding the coronaries and intracranial vasculature. Vascular surgeons also are called to assist other physicians to carry out surgery near vessels, or to salvage vascular injuries that include hemorrhage control, dissection, occlusion or simply for safe exposure of vascular structures.

<span class="mw-page-title-main">Pulmonary hypertension</span> Increased blood pressure in lung arteries

Pulmonary hypertension is a condition of increased blood pressure in the arteries of the lungs. Symptoms include shortness of breath, fainting, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual. According to the definition at the 6th World Symposium of Pulmonary Hypertension in 2018, a patient is deemed to have pulmonary hypertension if the pulmonary mean arterial pressure is greater than 20mmHg at rest, revised down from a purely arbitrary 25mmHg, and pulmonary vascular resistance (PVR) greater than 3 Wood units.

<span class="mw-page-title-main">Primary familial brain calcification</span> Indiana genetic disorder involving calcification of the basal ganglia

Primary familial brain calcification (PFBC), also known as familial idiopathic basal ganglia calcification (FIBGC) and Fahr's disease, is a rare, genetically dominant, inherited neurological disorder characterized by abnormal deposits of calcium in areas of the brain that control movement. Through the use of CT scans, calcifications are seen primarily in the basal ganglia and in other areas such as the cerebral cortex.

<span class="mw-page-title-main">Kawasaki disease</span> Disease found in young children

Kawasaki disease is a syndrome of unknown cause that results in a fever and mainly affects children under 5 years of age. It is a form of vasculitis, where medium-sized blood vessels become inflamed throughout the body. The fever typically lasts for more than five days and is not affected by usual medications. Other common symptoms include large lymph nodes in the neck, a rash in the genital area, lips, palms, or soles of the feet, and red eyes. Within three weeks of the onset, the skin from the hands and feet may peel, after which recovery typically occurs. The disease is the leading cause of acquired heart disease in children in developed countries, which include the formation of coronary artery aneurysms and myocarditis.

<span class="mw-page-title-main">Renal artery stenosis</span> Medical condition

Renal artery stenosis (RAS) is the narrowing of one or both of the renal arteries, most often caused by atherosclerosis or fibromuscular dysplasia. This narrowing of the renal artery can impede blood flow to the target kidney, resulting in renovascular hypertension – a secondary type of high blood pressure. Possible complications of renal artery stenosis are chronic kidney disease and coronary artery disease.

<span class="mw-page-title-main">Calcification</span> Calcification in bones

Calcification is the accumulation of calcium salts in a body tissue. It normally occurs in the formation of bone, but calcium can be deposited abnormally in soft tissue, causing it to harden. Calcifications may be classified on whether there is mineral balance or not, and the location of the calcification. Calcification may also refer to the processes of normal mineral deposition in biological systems, such as the formation of stromatolites or mollusc shells.

<span class="mw-page-title-main">Hypophosphatasia</span> Medical condition

Hypophosphatasia (; also called deficiency of alkaline phosphatase, phosphoethanolaminuria, or Rathbun's syndrome; sometimes abbreviated HPP) is a rare, and sometimes fatal, inherited metabolic bone disease. Clinical symptoms are heterogeneous, ranging from the rapidly fatal, perinatal variant, with profound skeletal hypomineralization, respiratory compromise or vitamin B6 dependent seizures to a milder, progressive osteomalacia later in life. Tissue non-specific alkaline phosphatase (TNSALP) deficiency in osteoblasts and chondrocytes impairs bone mineralization, leading to rickets or osteomalacia. The pathognomonic finding is subnormal serum activity of the TNSALP enzyme, which is caused by one of 388 genetic mutations identified to date, in the gene encoding TNSALP. Genetic inheritance is autosomal recessive for the perinatal and infantile forms but either autosomal recessive or autosomal dominant in the milder forms.

<span class="mw-page-title-main">Pseudoxanthoma elasticum</span> Medical condition

Pseudoxanthoma elasticum (PXE) is a genetic disease that causes mineralization of elastic fibers in some tissues. The most common problems arise in the skin and eyes, and later in blood vessels in the form of premature atherosclerosis. PXE is caused by autosomal recessive mutations in the ABCC6 gene on the short arm of chromosome 16 (16p13.1).

<span class="mw-page-title-main">Fibromuscular dysplasia</span> Human arterial disease

Fibromuscular dysplasia (FMD) is a non-atherosclerotic, non-inflammatory disease of the blood vessels that causes abnormal growth within the wall of an artery. FMD has been found in nearly every arterial bed in the body although the most common arteries affected are the renal and carotid arteries.

<span class="mw-page-title-main">Ortner's syndrome</span> Medical condition

Ortner's syndrome is a rare cardiovocal syndrome and refers to recurrent laryngeal nerve palsy from cardiovascular disease. It was first described by Norbert Ortner (1865–1935), an Austrian physician, in 1897.

<span class="mw-page-title-main">Nutcracker syndrome</span> Medical condition

The nutcracker syndrome (NCS) results most commonly from the compression of the left renal vein (LRV) between the abdominal aorta (AA) and superior mesenteric artery (SMA), although other variants exist. The name derives from the fact that, in the sagittal plane and/or transverse plane, the SMA and AA appear to be a nutcracker crushing a nut.

<span class="mw-page-title-main">Arterial tortuosity syndrome</span> Medical condition

Arterial tortuosity syndrome is an extremely rare congenital connective tissue condition disorder characterized by tortuosity, elongation, stenosis, or aneurysms in major and medium-size arteries including the aorta. It is associated with hyperextensible skin and hypermobility of joints, however symptoms vary depending on the person. Because ATS is so rare, relatively little is known about the disease compared to more common diseases.

<span class="mw-page-title-main">Ectonucleotide pyrophosphatase/phosphodiesterase 1</span>

Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 is an enzyme that in humans is encoded by the ENPP1 gene.

<span class="mw-page-title-main">Keutel syndrome</span> Medical condition

Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein, MGP. Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP alleles will likely inherit KS.

Alveolar capillary dysplasia (ACD) is a rare, congenital diffuse lung disease characterized by abnormal blood vessels in the lungs that cause highly elevated pulmonary blood pressure and an inability to effectively oxygenate and remove carbon dioxide from the blood. ACD typically presents in newborn babies within hours of birth as rapid and labored breathing, blue-colored lips or skin, quickly leading to respiratory failure and death. Atypical forms of ACD have been reported with initially milder symptoms and survival of many months before the onset of respiratory failure or lung transplantation.

<span class="mw-page-title-main">ACDC (medicine)</span> Medical condition

Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disorder that causes calcium buildup in the arteries and joints of the hands and feet, and other areas below the waist. Although patients exhibiting these symptoms have been identified as early as 1914, this disorder had not been studied extensively until recently. The identification of the specific ACDC gene and mutations occurred in 2011. ACDC is caused by a mutation in the NT5E gene, which prevents calcium-removing agents from functioning,. Patients with this mutation experience chronic pain, difficulty moving, and increased risk of cardiovascular problems. In experiments at the molecular level, treatment with adenosine or a phosphatase inhibitor reversed and prevented calcification, suggesting they could be used as possible treatment methods. There is currently no cure for ACDC, and patients have limited treatment options which focus primarily on removal of blood calcium and improving mobility.

<span class="mw-page-title-main">Polysyndactyly</span> Medical condition

Polysyndactyly is a congenital anomaly, combining polydactyly and syndactyly, in which affected individuals have an extra finger or toe that is connected, via fusing or webbing, to an adjacent digit.

References

  1. Witzleben, C.L (1970). "Idiopathic infantile arterial calcification—A misnomer?". The American Journal of Cardiology. 26 (3): 305–9. doi:10.1016/0002-9149(70)90798-8. PMID   4196111.
  2. 1 2 Chong, Curtis R.; Hutchins, Grover M. (2008). "Idiopathic Infantile Arterial Calcification: The Spectrum of Clinical Presentations". Pediatric and Developmental Pathology. 11 (5): 405–15. doi:10.2350/07-06-0297.1. PMID   17990935. S2CID   9031166.
  3. Rutsch, Frank; Ruf, Nico; Vaingankar, Sucheta; Toliat, Mohammad R.; Suk, Anita; Höhne, Wolfgang; Schauer, Galen; Lehmann, Mandy; et al. (2003). "Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification". Nature Genetics. 34 (4): 379–81. doi:10.1038/ng1221. PMID   12881724. S2CID   12784972.
  4. 1 2 3 "Generalized arterial calcification of infancy". Genetic Home Reference-US National Library of Medicine.
  5. Greenberg, S. Bruce; Gibson, James (2005). "New Findings in Idiopathic Arterial Calcification of Infancy Detected by MDCT". American Journal of Roentgenology. 185 (2): 530–2. doi:10.2214/ajr.185.2.01850530. PMID   16037532.
  6. Rutsch, Frank; Boyer, Petra; Nitschke, Yvonne; Ruf, Nico; Lorenz-Depierieux, Bettina; Wittkampf, Tanja; Weissen-Plenz, Gabriele; Fischer, Rudolf-Josef; et al. (2008). "Hypophosphatemia, Hyperphosphaturia, and Bisphosphonate Treatment Are Associated with Survival Beyond Infancy in Generalized Arterial Calcification of Infancy". Circulation: Cardiovascular Genetics. 1 (2): 133–40. doi:10.1161/CIRCGENETICS.108.797704. PMC   2794045 . PMID   20016754.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Ferreira, Carlos; Ziegler, Shira; Gahl, William A. (1993), Adam, Margaret P.; Ardinger, Holly H.; Pagon, Roberta A.; Wallace, Stephanie E. (eds.), "Generalized Arterial Calcification of Infancy", GeneReviews®, University of Washington, Seattle, PMID   25392903 , retrieved 2019-10-17
  8. 1 2 Ferreira, Carlos R.; van Karnebeek, Clara D. M.; Vockley, Jerry; Blau, Nenad (January 2019). "A proposed nosology of inborn errors of metabolism". Genetics in Medicine. 21 (1): 102–106. doi:10.1038/s41436-018-0022-8. ISSN   1530-0366. PMC   6286709 . PMID   29884839.
  9. 1 2 3 "Company". Inozyme Pharma. Retrieved 2019-10-17.
  10. 1 2 Abu-Asbeh, J; Khan, J; Shallal, A (2006). "Idiopathic infantile arterial calcification associated with leukomalacia". Journal of the Arab Neonatology Forum. 3 (1): 15–9. Archived from the original on 2013-06-16. Retrieved 2013-05-14.
  11. Nagar, Arpit M.; Hanchate, Vijay; Tandon, Ankit; Thakkar, Hemangini; Chaubal, Nitin G. (2003-06-01). "Antenatal Detection of Idiopathic Arterial Calcification With Hydrops Fetalis". Journal of Ultrasound in Medicine. 22 (6): 653–9. doi:10.7863/jum.2003.22.6.653. PMID   12795564.
  12. Maayan, Ch.; Peleg, O.; Eyal, F.; Mogle, P.; Rosenmann, E.; Ziv, J. Bar (1984). "Idiopathic infantile arterial calcification: A case report and review of the literature". European Journal of Pediatrics. 142 (3): 211–5. doi:10.1007/BF00442452. PMID   6468446. S2CID   5646069.
  13. Milner, Laurence S.; Heitner, René; Thomson, Peter D.; Levin, Solomon E.; Rothberg, Alan D.; Beale, Peter; Ninin, Daniel T. (1984). "Hypertension as the major problem of idiopathic arterial calcification of infancy". The Journal of Pediatrics. 105 (6): 934–8. doi:10.1016/S0022-3476(84)80080-3. PMID   6502343.
  14. Hunt, A. C.; Leys, D. G. (1957). "Generalized Arterial Calcification of Infancy". BMJ. 1 (5015): 385–6. doi:10.1136/bmj.1.5015.385. PMC   1974337 . PMID   13396267.
  15. Thiaville, A.; Smets, A.; Clercx, A.; Perlmutter, N. (1994). "Idiopathic infantile arterial calcification: A surviving patient with renal artery stenosis". Pediatric Radiology. 24 (7): 506–8. doi:10.1007/BF02015014. PMID   7885787. S2CID   12071177.
  16. Rutsch, Frank; Vaingankar, Sucheta; Johnson, Kristen; Goldfine, Ira; Maddux, Betty; Schauerte, Petra; Kalhoff, Hermann; Sano, Kimihiko; et al. (2001). "PC-1 Nucleoside Triphosphate Pyrophosphohydrolase Deficiency in Idiopathic Infantile Arterial Calcification". The American Journal of Pathology. 158 (2): 543–54. doi:10.1016/S0002-9440(10)63996-X. PMC   1850320 . PMID   11159191.
  17. Hault, Kathrin; Sebire, Neil J.; Ho, Siew Y.; Sheppard, Mary N. (2008). "The difficulty in diagnosing idiopathic arterial calcification of infancy, its variation in presentation, and the importance of autopsy". Cardiology in the Young. 18 (6): 624–7. doi:10.1017/S1047951108003168. PMID   18842162. S2CID   6649860.
  18. Lussier-Lazaroff, J.; Fletcher, B. D. (1973). "Idiopathic infantile arterial calcification: Roentgen diagnosis of a rare cause of coronary artery occlusion". Pediatric Radiology. 1 (4): 224–8. doi:10.1007/BF00972856. PMID   4779072. S2CID   37195633.
  19. Rosenbaum, DM; Blumhagen, JD (1986). "Sonographic recognition of idiopathic arterial calcification of infancy". American Journal of Roentgenology. 146 (2): 249–50. doi:10.2214/ajr.146.2.249. PMID   3510511.
  20. Pao, D. G.; Deangelis, G. A.; Lovell, Mark A.; Hagspiel, Klaus D.; Hagspiel, KD (1998). "Idiopathic arterial calcification of infancy: Sonographic and magnetic resonance findings with pathologic correlation". Pediatric Radiology. 28 (4): 256–9. doi:10.1007/s002470050344. PMID   9545482. S2CID   21204937.
  21. Whitehall, John; Smith, Mark; Altamirano, Louis (2003). "Idiopathic infantile arterial calcification: Sonographic findings". Journal of Clinical Ultrasound. 31 (9): 497–501. doi:10.1002/jcu.10208. PMID   14595743. S2CID   23001702.
  22. Tran, Kim H.; Boechat, M. Ines (2006). "Idiopathic infantile arterial calcification: Imaging evaluation and the usefulness of MR angiography". Pediatric Radiology. 36 (3): 247–53. doi:10.1007/s00247-005-0044-7. PMID   16429273. S2CID   12326688.
  23. Sharmila, N.; Prashant, S. Joshi; Ravikumar, Vani (Jan–Mar 2010). "Idiopathic Infantile arterial calcification–A Very rare case". Online Journal of Health and Allied Sciences. 9 (1). ISSN   0972-5997.
  24. 1 2 Inwald, D P; Yen Ho, S; Shepherd, M N; Daubeney, P E F (2006). "Idiopathic infantile arterial calcification presenting as fatal hypertensive cardiomyopathy". Archives of Disease in Childhood. 91 (11): 928. doi:10.1136/adc.2006.103093. PMC   2082956 . PMID   17056867.
  25. Vera, J.; Lucaya, J.; Garcia Conesa, J. A.; Aso, C.; Balaguer, A. (1990). "Idiopathic infantile arterial calcification: Unusual features". Pediatric Radiology. 20 (8): 585–7. doi:10.1007/BF02129060. PMID   2251001. S2CID   39010437.
  26. Conn, Jessica; Hussaini, Shaheen; Greenberg, S. Bruce; Vanderzalm, Theodora; Klein, Sarah G. "Idiopathic Arterial Calcification of Infancy" (PDF). Little Rock, Arkansas: University of Arkansas for Medical Sciences and Arkansas Children's Hospital.
  27. Levine, J. C.; Campbell, J.; Nadel, A. (2001). "Prenatal Diagnosis of Idiopathic Infantile Arterial Calcification". Circulation. 103 (2): 325–6. doi: 10.1161/01.CIR.103.2.325 . PMID   11208697.
  28. Sundaram, S; Kuruvilla, S; Thirupuram, S (2004). "Idiopathic arterial calcification of infancy - a case report". Images in Paediatric Cardiology. 6 (1): 6–12. PMC   3232550 . PMID   22368635.
  29. Dlamini, Nomazulu; Splitt, Miranda; Durkan, Anne; Siddiqui, Ata; Padayachee, Soundrie; Hobbins, Sue; Rutsch, Frank; Wraige, Elizabeth (2009). "Generalized arterial calcification of infancy: Phenotypic spectrum among three siblings including one case without obvious arterial calcifications". American Journal of Medical Genetics Part A. 149A (3): 456–60. doi:10.1002/ajmg.a.32646. PMID   19206175. S2CID   33406978.
  30. Eller, Philipp; Hochegger, Kathrin; Feuchtner, Gudrun M.; Zitt, Emanuel; Tancevski, Ivan; Ritsch, Andreas; Kronenberg, Florian; Rosenkranz, Alexander R.; et al. (2007). "Impact of ENPP1 genotype on arterial calcification in patients with end-stage renal failure". Nephrology Dialysis Transplantation. 23 (1): 321–7. doi: 10.1093/ndt/gfm566 . PMID   17848394.
  31. Nasrallah, F. K.; Baho, H.; Sallout, A.; Qurashi, M. (2009). "Prenatal diagnosis of idiopathic infantile arterial calcification with hydrops fetalis". Ultrasound in Obstetrics and Gynecology. 34 (5): 601–4. doi: 10.1002/uog.7438 . PMID   19813208.
  32. Meradji, M.; De Villeneuve, V.H.; Huber, J.; De Bruijn, W.C.; Pearse, R.G. (1978). "Idiopathic infantile arterial calcification in siblings: Radiologic diagnosis and successful treatment". The Journal of Pediatrics. 92 (3): 401–5. doi:10.1016/S0022-3476(78)80427-2. PMID   416189.
  33. "SONOWORLD : Idiopathic infantile arterial calcification".
  34. Stuart, G; Wren, C; Bain, H (1990). "Idiopathic infantile arterial calcification in two siblings: Failure of treatment with diphosphonate". Heart. 64 (2): 156–9. doi:10.1136/hrt.64.2.156. PMC   1024357 . PMID   2118367.
  35. Bellah, Richard D.; Zawodniak, Len; Librizzi, Ronald J.; Harris, Mary Catherine (1992). "Idiopathic arterial calcification of infancy: Prenatal and postnatal effects of therapy in an infant". The Journal of Pediatrics. 121 (6): 930–3. doi: 10.1016/S0022-3476(05)80345-2 . PMID   1447660.
  36. Ramjan, Kim A; Roscioli, Tony; Rutsch, Frank; Sillence, David; Munns, Craig FJ (2009). "Generalized arterial calcification of infancy: Treatment with bisphosphonates". Nature Clinical Practice Endocrinology & Metabolism. 5 (3): 167–72. doi:10.1038/ncpendmet1067. PMID   19229237. S2CID   24401990.
  37. Dyck, M.; Proesmans, W.; Hollebeke, E.; Marchal, G.; Moerman, Ph. (1989). "Idiopathic infantile arterial calcification with cardiac, renal and central nervous system involvement". European Journal of Pediatrics. 148 (4): 374–7. doi:10.1007/BF00444138. PMID   2707283. S2CID   22760957.
  38. Ramjan, Kim; Munns, Craig; Roscioli, Tony; Sillence, David. "Successful treatment of infantile arterial calcification (IAC) with bisphosphonates" (PDF).[ unreliable medical source? ]
  39. Sluis, Inge M.; Boot, Annemieke M.; Vernooij, Meike; Meradji, Morteza; Kroon, André A. (2006). "Idiopathic infantile arterial calcification: Clinical presentation, therapy and long-term follow-up". European Journal of Pediatrics. 165 (9): 590–3. doi:10.1007/s00431-006-0146-8. PMID   16649023. S2CID   2365378.
  40. Culling, Bronwyn; Loughran-Fowlds, Alison; Munns, Craig; Sillence, David; Walsh, Corrina; Taylor, Peter; Buckley, Michael; Rutsch, Frank; Roscioli, Tony (August 6–10, 2006). Infantile Arterial Calcification: Successful Treatment with Bisphosphonate. 11th International Congress of Human Genetics. Brisbane, Australia. Archived from the original on May 12, 2006.
  41. Ciana, G.; Colonna, F.; Forleo, V.; Brizzi, F.; Benettoni, A.; de Vonderweid, U. (1997). "Idiopathic Arterial Calcification of Infancy: Effectiveness of Prostaglandin Infusion for Treatment of Secondary Hypertension Refractory to Conventional Therapy: Case Report". Pediatric Cardiology. 18 (1): 67–71. doi:10.1007/s002469900114. PMID   8960499. S2CID   1520872.
  42. Glatz, Andrew C.; Pawel, Bruce R.; Hsu, Daphne T.; Weinberg, Paul; Chrisant, Maryanne R. K. (2006). "Idiopathic infantile arterial calcification: Two case reports, a review of the literature and a role for cardiac transplantation". Pediatric Transplantation. 10 (2): 225–33. doi:10.1111/j.1399-3046.2005.00414.x. PMID   16573612. S2CID   42109157.
  43. Giovannoni, Isabella; Callea, Francesco; Travaglini, Lorena; Amodeo, Antonio; Cogo, Paola; Secinaro, Aurelio; Bizzarri, Carla; Cutrera, Renato; El Hachem, May; Francalanci, Paola (2014-11-01). "Heart transplant and 2-year follow up in a child with generalized arterial calcification of infancy". European Journal of Pediatrics. 173 (12): 1735–1740. doi:10.1007/s00431-014-2447-7. ISSN   0340-6199. PMID   25367056. S2CID   6398987.
  44. Sholler, Gary F.; Yu, John S.; Bale, Patricia M.; Hawker, Richard E.; Celermajer, John M.; Kozlowski, Kasimir (1984). "Generalized arterial calcification of infancy: Three case reports, including spontaneous regression with long-term survival". The Journal of Pediatrics. 105 (2): 257–60. doi:10.1016/S0022-3476(84)80123-7. PMID   6747757.
  45. Marrott, Pran K.; Newcombe, Ken D.; Becroft, David M. O.; Friedlander, Denis H. (1984). "Idiopathic infantile arterial calcification with survival to adult life". Pediatric Cardiology. 5 (2): 119–22. doi:10.1007/BF02424963. PMID   6473121. S2CID   6991285.
  46. Ciana, Giovanni; Trappan, Antonella; Bembi, Bruno; Benettoni, Alessandra; Maso, Giampaolo; Zennaro, Floriana; Ruf, Nico; Schnabel, Dirk; Rutsch, Frank (2005). "Generalized arterial calcification of infancy: Two siblings with prolonged survival". European Journal of Pediatrics. 165 (4): 258–63. doi:10.1007/s00431-005-0035-6. PMID   16315058. S2CID   13310507.
  47. Thomas, Philomena; Chandra, Manju; Kahn, Ellen; McVicar, Melinda; Naidich, James; Lacorte, Michael (1990). "Idiopathic arterial calcification of infancy: A case with prolonged survival". Pediatric Nephrology. 4 (3): 233–5. doi:10.1007/BF00857661. PMID   2400650. S2CID   40660217.
  48. Cheng, Kun-Shan; Chen, Ming-Ren; Ruf, Nico; Lin, Shuan-Pei; Rutsch, Frank (2005). "Generalized arterial calcification of infancy: Different clinical courses in two affected siblings". American Journal of Medical Genetics Part A. 136A (2): 210–3. doi:10.1002/ajmg.a.30800. PMID   15940697. S2CID   22783574.
  49. 1 2 Albright, Ronald A.; Stabach, Paul; Cao, Wenxiang; Kavanagh, Dillon; Mullen, Isabelle; Braddock, Alexander A.; Covo, Mariel S.; Tehan, Martin; Yang, Guangxiao; Cheng, Zhiliang; Bouchard, Keith (December 2015). "ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy". Nature Communications. 6 (1): 10006. Bibcode:2015NatCo...610006A. doi:10.1038/ncomms10006. ISSN   2041-1723. PMC   4686714 . PMID   26624227.
  50. "Demetrios Braddock > Doctor at Yale Medicine". Yale Medicine. Retrieved 2019-10-17.
  51. 1 2 "News + Media for 10/2019 | Office of Cooperative Research". ocr.yale.edu. Retrieved 2019-10-17.
  52. "Inozyme Pharma, Inc. - Massachusetts Biotechnology Council". www.massbio.org. Retrieved 2019-10-17.