Generalized entropy index

Last updated
South Africa Inequality: Generalized Entropy Measure South Africa Inequality (Generalized Entropy Measure, Parameter 2) (5457977862).jpg
South Africa Inequality: Generalized Entropy Measure

The generalized entropy index has been proposed as a measure of income inequality in a population. [1] It is derived from information theory as a measure of redundancy in data. In information theory a measure of redundancy can be interpreted as non-randomness or data compression; thus this interpretation also applies to this index. In addition, interpretation of biodiversity as entropy has also been proposed leading to uses of generalized entropy to quantify biodiversity. [2]

Contents

Formula

The formula for general entropy for real values of is:

where N is the number of cases (e.g., households or families), is the income for case i and is a parameter which regulates the weight given to distances between incomes at different parts of the income distribution. For large the index is especially sensitive to the existence of large incomes, whereas for small the index is especially sensitive to the existence of small incomes.

Properties

The GE index satisfies the following properties:

  1. The index is symmetric in its arguments: for any permutation .
  2. The index is non-negative, and is equal to zero only if all incomes are the same: iff for all .
  3. The index satisfies the principle of transfers: if a transfer is made from an individual with income to another one with income such that , then the inequality index cannot increase.
  4. The index satisfies population replication axiom: if a new population is formed by replicating the existing population an arbitrary number of times, the inequality remains the same:
  5. The index satisfies mean independence, or income homogeneity, axiom: if all incomes are multiplied by a positive constant, the inequality remains the same: for any .
  6. The GE indices are the only additively decomposable inequality indices. [1] This means that overall inequality in the population can be computed as the sum of the corresponding GE indices within each group, and the GE index of the group mean incomes:
where indexes groups, , individuals within groups, is the mean income in group , and the weights depend on and . The class of the additively-decomposable inequality indices is very restrictive. Many popular indices, including Gini index, do not satisfy this property. [1] [3]

Relationship to other indices

An Atkinson index for any inequality aversion parameter can be derived from a generalized entropy index under the restriction that - i.e. an Atkinson index with high inequality aversion is derived from a GE index with small .

The formula for deriving an Atkinson index with inequality aversion parameter under the restriction is given by:

Note that the generalized entropy index has several income inequality metrics as special cases. For example, GE(0) is the mean log deviation a.k.a. Theil L index, GE(1) is the Theil T index, and GE(2) is half the squared coefficient of variation.

See also

Related Research Articles

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Maxwell–Boltzmann statistics</span> Statistical distribution used in many-particle mechanics

In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various energy states in thermal equilibrium. It is applicable when the temperature is high enough or the particle density is low enough to render quantum effects negligible.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

In mathematical statistics, the Kullback–Leibler (KL) divergence, denoted , is a type of statistical distance: a measure of how much a model probability distribution Q is different from a true probability distribution P. Mathematically, it is defined as

In statistical mechanics, the grand canonical ensemble is the statistical ensemble that is used to represent the possible states of a mechanical system of particles that are in thermodynamic equilibrium with a reservoir. The system is said to be open in the sense that the system can exchange energy and particles with a reservoir, so that various possible states of the system can differ in both their total energy and total number of particles. The system's volume, shape, and other external coordinates are kept the same in all possible states of the system.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

The Theil index is a statistic primarily used to measure economic inequality and other economic phenomena, though it has also been used to measure racial segregation. The Theil index TT is the same as redundancy in information theory which is the maximum possible entropy of the data minus the observed entropy. It is a special case of the generalized entropy index. It can be viewed as a measure of redundancy, lack of diversity, isolation, segregation, inequality, non-randomness, and compressibility. It was proposed by a Dutch econometrician Henri Theil (1924–2000) at the Erasmus University Rotterdam.

The Atkinson index is a measure of income inequality developed by British economist Anthony Barnes Atkinson. The measure is useful in determining which end of the distribution contributed most to the observed inequality.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

The term generalized logistic distribution is used as the name for several different families of probability distributions. For example, Johnson et al. list four forms, which are listed below.

The Foster–Greer–Thorbeckeindices are a family ofpoverty metrics. The most commonly used index from the family, FGT2, puts higher weight on the poverty of the poorest individuals, making it a combined measure of poverty and income inequality and a popular choice within development economics. The indices were introduced in a 1984 paper by economists Erik Thorbecke, Joel Greer, and James Foster.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In financial mathematics and stochastic optimization, the concept of risk measure is used to quantify the risk involved in a random outcome or risk position. Many risk measures have hitherto been proposed, each having certain characteristics. The entropic value at risk (EVaR) is a coherent risk measure introduced by Ahmadi-Javid, which is an upper bound for the value at risk (VaR) and the conditional value at risk (CVaR), obtained from the Chernoff inequality. The EVaR can also be represented by using the concept of relative entropy. Because of its connection with the VaR and the relative entropy, this risk measure is called "entropic value at risk". The EVaR was developed to tackle some computational inefficiencies of the CVaR. Getting inspiration from the dual representation of the EVaR, Ahmadi-Javid developed a wide class of coherent risk measures, called g-entropic risk measures. Both the CVaR and the EVaR are members of this class.

In statistics and econometrics, the mean log deviation (MLD) is a measure of income inequality. The MLD is zero when everyone has the same income, and takes larger positive values as incomes become more unequal, especially at the high end.

References

  1. 1 2 3 Shorrocks, A. F. (1980). "The Class of Additively Decomposable Inequality Measures". Econometrica. 48 (3): 613–625. doi:10.2307/1913126. JSTOR   1913126.
  2. Pielou, E.C. (December 1966). "The measurement of diversity in different types of biological collections". Journal of Theoretical Biology. 13: 131–144. Bibcode:1966JThBi..13..131P. doi:10.1016/0022-5193(66)90013-0.
  3. STEPHEN, JENKINS. "CALCULATING INCOME DISTRIBUTION INDICES FROM MICRO-DATA" (PDF). National Tax Journal . University of Oregon.