Genetic isolate

Last updated

A genetic isolate is a population of organisms with little genetic mixing with other organisms within the same species due to geographic isolation or other factors that prevent reproduction. Genetic isolates form new species through an evolutionary process known as speciation. All modern species diversity is a product of genetic isolates and evolution.[ citation needed ]

Contents

The current distribution of genetic differences and isolation within and among populations is also influenced by genetic processes, which can give significant input into evolution's basic principles. The resulting genetic diversity within a species' distribution range is frequently unequally distributed, and significant disparities can occur in the series of fields when population dispersion and isolation are critical for species survival. [1]

The interrelationship of genetic drift, gene flow, and natural selection determines the level and dispersion of genetic differences between populations and among species assemblages. [2] Geographic and natural elements may likewise add to these cycles and further impact species' advanced examples of hereditary variety, such as genetic differences that cause genetic isolation. [3] Genetic variations are often unequally distributed over a species' geographic distribution, with differences between populations at the geographic center and the range's extremities. [4]

Significant gene flow occurs in core populations, resulting in genetic uniformity. In contrast, low gene flow, severe genetic drift, and diverse selection conditions occur in range periphery populations, enhancing genetic isolation and heterogeneity among people. [5] Genetic differentiation resulting from genetic isolation occurs as significant alterations in genetic variations, such as fluctuations in allelic frequencies, that accumulate over time with geographic regional boundaries.[ citation needed ]

Significant genetic diversity can be detected toward the limits of a species range, where population fragmentation and isolation are more likely to affect genetic processes. Fragmentation is the division of a large population into smaller, geographically separated habitats, resulting in genetic differences within and across groups. [6] Regional splitting is produced by a variety of factors, including environmental processes that regularly change a species' indigenous distribution. [7] Additionally, human-caused environmental changes such as deforestation and land degradation can result in rapid changes in a species' distribution, leading to population decrease, segmentation, and regional isolation. [8]

History

Isolation, in combination with diminishing habitat quality and a limited population density, is likely to result in a population's collapse and ultimate extinction. [9] Random mutation rate, drift, high rates of inbreeding, restricted gene flow, and regional extinction have all been shown to increase with isolation. Varying climatic conditions, such as particular geographic climatic changes, can cause pressures that can drastically change a species' genetic composition, yielding differences through starkly different selection processes [10] as well as leading to increased genetic isolation among populations on a landscape heterogeneity. [11]

Environmental heterogeneity has historically been identified as a vital source of genetic variations and distinctions due to isolation, and several studies have found correlations between neutral genetic differences, ecological heterogeneity, and genetic isolation. The genetic isolation and different associations in regional heterogeneity could be cited as evidence of diversifying selection working across entire genomes, encompassing manifestly neutral genes. They can be used to predict the long-term effects of environmental factors on genetic diversity and isolation. [12]

Definition

Genetic isolation is the population of organisms with little genetic mixing with other organisms within the same species. This may result in speciation, but this is not necessarily true. Genetic isolates may form new species in several ways:

Human influences on genetic isolates include restricted breeding of dogs or a community living secluded away from others (such as Tristan da Cunha or Pitcairn Islands). Far more significant and less secluded human genetic isolates are peoples like Sardinians or also the Finns, natives of Finland.[ citation needed ]

Genetic isolation and the Giraffa camelopardalis

Genetic isolation can happen in a variety of ways. Many ongoing research projects are evaluating how various species have diverged through the process of genetic isolation, the giraffe, Giraffa camelopardalis , being one example. Giraffes are recognized to have nine separate subspecies, each varying in coloration and patterns. [13] After much research, it is accepted that genetic isolation allowed the G. camelopardalis species to diverge.[ citation needed ]

There are various ideas behind how genetic isolation has occurred within the giraffe species. Extant giraffe populations have been studied to make small-scale migratory movements based on the African climate's wet and dry seasons. [14] The feeding ecology of giraffes is highly researched. It has shown that giraffes will follow the growth patterns of the Acacia tree based upon seasonal change, changing locations from mountain ranges to desert ranges. [15] Though this is not evidence for current-day genetic isolation, it suggests past large-scale migrations that may have caused separation within the species, caused genetic isolation, and led to the beginnings of the sub-speciation of the giraffe population.[ citation needed ]

Giraffes also tend to travel in loose social herds. However, these loose social herds have been researched to be based on a non-random system. This non-random system follows a trend of kinship or the sharing of similar genes between individuals. These loose-social herds keep kin and familiar individuals within the same group, with only slight movements of individuals from the pack, only to return to the same group. [16] This is evidence for genetic isolation by interaction only between familiar individuals. This is the cause of interbreeding and the accumulation of specific alleles. These alleles could potentially code for pelage color and pattern within a population, causing differences between people and, ultimately, the sub-speciation of the giraffe species.[ citation needed ]

Geographic separation has also been studied to play a role in the genetic isolation of the giraffe. The mitochondrial DNA of the giraffe has been looking for mutations and loci substitutions between subspecies and suggests diversification around the Late Pleistocene, where geographic isolation was likely. [17]

Allopatric speciation

The giraffe can represent the allopatric speciation that occurs due to the genetic isolation of a population. Several clades of giraffes show differentiation within their mitochondrial DNA, varying between regions throughout Africa. These differences date back to the middle of the Pleistocene epoch and coincide with genetic isolation due to climatic and geographical separations within the population, allowing for the evolution and sub speciation of the separate subspecies of giraffes and differences in their pelage. [18] In addition, when a species splits into two different groups that are isolated from one another, this is known as allopatric speciation. [19]

Genetic isolation and speciation

A genetic species is a collection of biologically compatible crossbreeding natural populations genetically distinct from genetically related people. In contrast to the biological species concept, the genetic species concept emphasizes genetic isolation rather than reproductive separation. The finding of genetically separate but not reproductively isolated species advances our knowledge of biodiversity, speciation, related issues, and organism evolution. Consider the development of two allopatric populations. Over lengthy periods, each group undergoes numerous substitutions, resulting in genetic differentiation and isolation. Would it be possible to transplant a divergent gene from one group into the genome of another? It's simple to see the gene being reasonably successful on this connected genetic background. That's also easy to see how it wouldn't work out because they are now genetically isolated from one another. [20]

Genetic isolation by environment or distance

Strong gene flow across populations can help local adaptation by bringing new genetic variations for selection, but it can also impede adaptation by clogging up locally beneficial genes. Population size, genetic diversity, and the environment can all impact the outcome. Isolation by distance (IBD), wherein population growth rates and immigration numbers are inversely proportional to population distance, may correlate gene flow patterns with geographic distance. Gene flow may also follow patterns of isolation by habitat, with higher rates of gene flow among an increasingly common form. Moreover, gene flow may be greatest across dissimilar areas, which is the typical genomic swamping situation. [21] When the population size is limited, and individuals are subjected to strong selection, gene flow can boost population numbers, even if the phenotypes that arise are generally mis-adapted. This can lead to increases in genetic differences that lead to isolation, allowing new adaptations to take hold and even enlarge a habitat zone. [22]

Genetic isolation in fragmented populations

The link between statistical genetic differences and population size has gotten little scientific attention, even though small populations have less genetic variation at marker loci. Researchers show that in smaller fragmented meta-population, both neutral and quantifiable genetic variation is reduced, and both drift and selection change is amplified. [23]

Genetic isolation in sympatric species

Adaptation to diverse positions and climatic conditions could be a significant source of genetic differences and population isolation. Pleiotropic-induced sexual selection between individuals of these genetically diverse populations can be caused by biological features selected in each habitat. This circumstance could make sympatric speciation easier. For example, successful host transitions in phytophagous insects provide compelling evidence for ecological diversification in sympatric speciation. [24]

Genetic isolation and the burden of genetic diversity

Species with enormous ecological amplitudes, on the whole, have a lot of genetic diversity. On the other hand, more specialized species with small ecological amplitude and frequency have minimal genetic diversity. Inbreeding depressions may pose the greatest threat to species with moderate habitat demands and substantial genetic diversity. [25]

The Influence of dispersal and diet on patterns of genetic isolation

Gene flow across populations is considered key in evolving local adaptations and speciation. Assessing genetic separation by distance is necessary to determine the impacts of dispersal ability and food breadth on genetic population structure. Strong dispersers have a mild IBD (isolation by distance) because of the homogenizing effects of gene flow, whereas stationary species have limited gene flow, which permits nearly all populations to isolate. Genetic uniformity is achieved at small geographical scales in intermediate dispersers, whereas limited dispersal increases genetic variability across vast distances. IBD is also thought to rise with decreasing food breadth and no other pattern, putting the theory that specialization promotes speciation by affecting population genetic subdivision to the test. In studies of IBD, the number of people is more essential than the number of multiple alleles per locus. [26]

Current patterns of genetic isolation on islands

Individuals from several vegetation types on the island are genetically connected, demonstrating that ecological and climatic factors have a role in determining gene flow configurations on a small island. Climatic differentiation, as a single factor is included as separate variability, provides to decreases in immigration and reproduction in as many species belong to a wide range of herbs families and with variable amounts of evolutionary understanding. The genetic structure of species on an isolated island is influenced by a range of environmental variables, with some species being influenced by single contours and others being influenced by many species. Sister species and congenerics have various contributing elements to isolation within species. [27]

Advantages

In most situations, highly specialized species are constrained to a small portion of the accessible environment, characterized by extremely isolated populations. [28] This ecological specialization, and consequently geographical constraint of indigenous populations is frequently accompanied by a reduction in gene flow, resulting in small population sizes and genetic differentiation. As a result, due to genetic isolation, such species can only survive if they are suited to minimal genetic isolation. [29] [30] In the search for lethal genes, genetic isolates with a background of a small founding population, long-term isolation, and population bottlenecks are invaluable resources. Specific rare, monogenic disorders get enhanced, and families with numerous sick members become common enough to be employed in locus-identifying linkage analyses. Besides that, most cases are caused by the same mutation, and diseased alleles expose the linkage of disequilibrium with molecular markers over strong genetic distances, making disease locus recognition easier in small study samples with few individuals affected using a similarity search for a shared genotype. The presence of disequilibrium linkage in disease alleles enhances linkage analysis and aids in determining the precise position of the disease locus on the genome sequence. [31]

Disadvantages

Many species fall somewhere between generalist and specialist on the generalist specialist range. Such species generally exhibit moderate environmental specialization, being neither pure generalists nor pure specialists, resulting in fluid changes that must be subjective when categorizing species. Despite their considerable habitat specialization, environmentally transitional species generally do not exhibit the low genetic diversity seen in pure specialists but instead exhibit species-specific genetic differences on the scale with generalists. Conversely, these taxa are categorized as far more endangered than their degree of specialization would suggest. This scenario can be harmful in the progression of population decline and may be one of the promoters of extinction in this instance, owing to the genomic instability of populations and unpredictable aggregation of detrimental genes. [32]

Example:

Genetic isolation in the cyclic rodent Microtus avails

Microtus arvalis, a small-sized mouse with short dispersal ranges that achieves relatively high richness, has been used as a model to investigate the effects of roads on genetic diversity and organization in fragmented and competitive habitats. The species' remarkable colonization potential has been observed in recent decades, [33] making it particularly well suited to studying small mammal dispersion strategies over short periods. Furthermore, these mouse populations achieve high local abundances and may endure significant population fluctuations in a few years, with well-defined periods. [34] In comparison to what has been reported for other morphologically similar small mammals with more reasonably expected populations, this species' cyclic variation in population size makes it particularly fascinating to explore the possible sensitivity to road barriers. [35] In a system with considerable population size changes, the lowest population size experiences the highest amounts of genetic drift. As a result, demographic bottlenecks are likely to significantly impact genetic isolations and variations, reducing variability within populations while increasing variance between them. On the other hand, the enormous population size and gene flow at the highest stages may lessen the effects of drift and bottlenecks. However, the species may take many generations to achieve new equilibrium values. [36]

See also

Related Research Articles

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

Allopatric speciation – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

<span class="mw-page-title-main">Sympatric speciation</span> Evolution of a new species from an ancestor in the same location

In evolutionary biology, sympatric speciation is the evolution of a new species from a surviving ancestral species while both continue to inhabit the same geographic region. In evolutionary biology and biogeography, sympatric and sympatry are terms referring to organisms whose ranges overlap so that they occur together at least in some places. If these organisms are closely related, such a distribution may be the result of sympatric speciation. Etymologically, sympatry is derived from Greek συν (sun-) 'together', and πατρίς (patrís) 'homeland'. The term was coined by Edward Bagnall Poulton in 1904, who explains the derivation.

<span class="mw-page-title-main">Peripatric speciation</span> Speciation in which a new species is formed from an isolated smaller peripheral population

Peripatric speciation is a mode of speciation in which a new species is formed from an isolated peripheral population. Since peripatric speciation resembles allopatric speciation, in that populations are isolated and prevented from exchanging genes, it can often be difficult to distinguish between them. Nevertheless, the primary characteristic of peripatric speciation proposes that one of the populations is much smaller than the other. The terms peripatric and peripatry are often used in biogeography, referring to organisms whose ranges are closely adjacent but do not overlap, being separated where these organisms do not occur—for example on an oceanic island compared to the mainland. Such organisms are usually closely related ; their distribution being the result of peripatric speciation.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Molecular ecology</span> Field of evolutionary biology

Molecular ecology is a field of evolutionary biology that is concerned with applying molecular population genetics, molecular phylogenetics, and more recently genomics to traditional ecological questions. It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. These fields are united in their attempt to study genetic-based questions "out in the field" as opposed to the laboratory. Molecular ecology is related to the field of conservation genetics.

<span class="mw-page-title-main">Species complex</span> Group of closely related similar organisms

In biology, a species complex is a group of closely related organisms that are so similar in appearance and other features that the boundaries between them are often unclear. The taxa in the complex may be able to hybridize readily with each other, further blurring any distinctions. Terms that are sometimes used synonymously but have more precise meanings are cryptic species for two or more species hidden under one species name, sibling species for two species that are each other's closest relative, and species flock for a group of closely related species that live in the same habitat. As informal taxonomic ranks, species group, species aggregate, macrospecies, and superspecies are also in use.

<span class="mw-page-title-main">Parapatric speciation</span> Speciation within a population where subpopulations are reproductively isolated

In parapatric speciation, two subpopulations of a species evolve reproductive isolation from one another while continuing to exchange genes. This mode of speciation has three distinguishing characteristics: 1) mating occurs non-randomly, 2) gene flow occurs unequally, and 3) populations exist in either continuous or discontinuous geographic ranges. This distribution pattern may be the result of unequal dispersal, incomplete geographical barriers, or divergent expressions of behavior, among other things. Parapatric speciation predicts that hybrid zones will often exist at the junction between the two populations.

In biology, a cline is a measurable gradient in a single characteristic of a species across its geographical range. Clines usually have a genetic, or phenotypic character. They can show either smooth, continuous gradation in a character, or more abrupt changes in the trait from one geographic region to the next.

<span class="mw-page-title-main">Isolation by distance</span>

Isolation by distance (IBD) is a term used to refer to the accrual of local genetic variation under geographically limited dispersal. The IBD model is useful for determining the distribution of gene frequencies over a geographic region. Both dispersal variance and migration probabilities are variables in this model and both contribute to local genetic differentiation. Isolation by distance is usually the simplest model for the cause of genetic isolation between populations. Evolutionary biologists and population geneticists have been exploring varying theories and models for explaining population structure. Yoichi Ishida compares two important theories of isolation by distance and clarifies the relationship between the two. According to Ishida, Sewall Wright's isolation by distance theory is termed ecological isolation by distance while Gustave Malécot's theory is called genetic isolation by distance. Isolation by distance is distantly related to speciation. Multiple types of isolating barriers, namely prezygotic isolating barriers, including isolation by distance, are considered the key factor in keeping populations apart, limiting gene flow.

The geographical limits to the distribution of a species are determined by biotic or abiotic factors. Core populations are those occurring within the centre of the range, and marginal populations are found at the boundary of the range.

<span class="mw-page-title-main">Ecological speciation</span>

Ecological speciation is a form of speciation arising from reproductive isolation that occurs due to an ecological factor that reduces or eliminates gene flow between two populations of a species. Ecological factors can include changes in the environmental conditions in which a species experiences, such as behavioral changes involving predation, predator avoidance, pollinator attraction, and foraging; as well as changes in mate choice due to sexual selection or communication systems. Ecologically-driven reproductive isolation under divergent natural selection leads to the formation of new species. This has been documented in many cases in nature and has been a major focus of research on speciation for the past few decades.

Local adaptation is a mechanism in evolutionary biology whereby a population of organisms evolves to be more well-suited to its local environment than other members of the same species that live elsewhere. Local adaptation requires that different populations of the same species experience different natural selection. For example, if a species lives across a wide range of temperatures, populations from warm areas may have better heat tolerance than populations of the same species that live in the cold part of its geographic range.

<span class="mw-page-title-main">Reinforcement (speciation)</span> Process of increasing reproductive isolation

Reinforcement is a process of speciation where natural selection increases the reproductive isolation between two populations of species. This occurs as a result of selection acting against the production of hybrid individuals of low fitness. The idea was originally developed by Alfred Russel Wallace and is sometimes referred to as the Wallace effect. The modern concept of reinforcement originates from Theodosius Dobzhansky. He envisioned a species separated allopatrically, where during secondary contact the two populations mate, producing hybrids with lower fitness. Natural selection results from the hybrid's inability to produce viable offspring; thus members of one species who do not mate with members of the other have greater reproductive success. This favors the evolution of greater prezygotic isolation. Reinforcement is one of the few cases in which selection can favor an increase in prezygotic isolation, influencing the process of speciation directly. This aspect has been particularly appealing among evolutionary biologists.

<span class="mw-page-title-main">History of speciation</span> Aspect of history

The scientific study of speciation — how species evolve to become new species — began around the time of Charles Darwin in the middle of the 19th century. Many naturalists at the time recognized the relationship between biogeography and the evolution of species. The 20th century saw the growth of the field of speciation, with major contributors such as Ernst Mayr researching and documenting species' geographic patterns and relationships. The field grew in prominence with the modern evolutionary synthesis in the early part of that century. Since then, research on speciation has expanded immensely.

Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes. The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number.

Allochronic speciation is a form of speciation arising from reproductive isolation that occurs due to a change in breeding time that reduces or eliminates gene flow between two populations of a species. The term allochrony is used to describe the general ecological phenomenon of the differences in phenology that arise between two or more species—speciation caused by allochrony is effectively allochronic speciation.

In biology, parallel speciation is a type of speciation where there is repeated evolution of reproductively isolating traits via the same mechanisms occurring between separate yet closely related species inhabiting different environments. This leads to a circumstance where independently evolved lineages have developed reproductive isolation from their ancestral lineage, but not from other independent lineages that inhabit similar environments. In order for parallel speciation to be confirmed, there is a set of three requirements that has been established that must be met: there must be phylogenetic independence between the separate populations inhabiting similar environments to ensure that the traits responsible for reproductive isolation evolved separately, there must be reproductive isolation not only between the ancestral population and the descendent population, but also between descendent populations that inhabit dissimilar environments, and descendent populations that inhabit similar environments must not be reproductively isolated from one another. To determine if natural selection specifically is the cause of parallel speciation, a fourth requirement has been established that includes identifying and testing an adaptive mechanism, which eliminates the possibility of a genetic factor such as polyploidy being the responsible agent.

References

  1. Tóth, Endre Gy; Tremblay, Francine; Housset, Johann M.; Bergeron, Yves; Carcaillet, Christopher (2019-10-17). "Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps". BMC Evolutionary Biology. 19 (1): 190. doi: 10.1186/s12862-019-1510-4 . ISSN   1471-2148. PMC   6798344 . PMID   31623551.
  2. ECKERT, C. G.; SAMIS, K. E.; LOUGHEED, S. C. (March 2008). "Genetic variation across species' geographical ranges: the central–marginal hypothesis and beyond". Molecular Ecology. 17 (5): 1170–1188. doi: 10.1111/j.1365-294x.2007.03659.x . ISSN   0962-1083. PMID   18302683. S2CID   13746514.
  3. Marchelli, P; Gallo, L A (September 2001). "Genetic diversity and differentiation in a southern beech subjected to introgressive hybridization". Heredity. 87 (3): 284–293. doi: 10.1046/j.1365-2540.2001.00882.x . ISSN   0018-067X. PMID   11737275. S2CID   22211025.
  4. Hampe, Arndt; Petit, Rémy J. (2005-03-07). "Conserving biodiversity under climate change: the rear edge matters". Ecology Letters. 8 (5): 461–467. doi:10.1111/j.1461-0248.2005.00739.x. hdl: 10261/64087 . ISSN   1461-023X. PMID   21352449.
  5. Brunet, Johanne; Larson-Rabin, Zachary; Stewart, Christy M. (June 2012). "The Distribution of Genetic Diversity Within and Among Populations of the Rocky Mountain Columbine: The Impact of Gene Flow, Pollinators, and Mating System". International Journal of Plant Sciences. 173 (5): 484–494. doi:10.1086/665263. ISSN   1058-5893. S2CID   84162712.
  6. Provan, Jim; Maggs, Christine A. (2011-05-18). "Unique genetic variation at a species' rear edge is under threat from global climate change". Proceedings of the Royal Society B: Biological Sciences. 279 (1726): 39–47. doi:10.1098/rspb.2011.0536. ISSN   0962-8452. PMC   3223643 . PMID   21593035.
  7. Hampe, Arndt; Petit, Rémy J. (2005-03-07). "Conserving biodiversity under climate change: the rear edge matters". Ecology Letters. 8 (5): 461–467. doi:10.1111/j.1461-0248.2005.00739.x. hdl: 10261/64087 . ISSN   1461-023X. PMID   21352449.
  8. Cheptou, Pierre-Olivier; Hargreaves, Anna L.; Bonte, Dries; Jacquemyn, Hans (2017-01-19). "Adaptation to fragmentation: evolutionary dynamics driven by human influences". Philosophical Transactions of the Royal Society B: Biological Sciences. 372 (1712): 20160037. doi:10.1098/rstb.2016.0037. ISSN   0962-8436. PMC   5182433 . PMID   27920382.
  9. Sterling, Ken A.; Reed, David H.; Noonan, Brice P.; Warren, Melvin L. (2012-03-28). "Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae)". Conservation Genetics. 13 (3): 859–872. doi:10.1007/s10592-012-0335-0. ISSN   1566-0621. S2CID   14016133.
  10. Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl (2014-02-07). "Local adaptations to frost in marginal and central populations of the dominant forest tree F agus sylvatica L . as affected by temperature and extreme drought in common garden experiments". Ecology and Evolution. 4 (5): 594–605. doi:10.1002/ece3.971. ISSN   2045-7758. PMC   4098140 . PMID   25035801.
  11. Bockelmann, A.-C.; Reusch, T. B. H.; Bijlsma, R.; Bakker, J. P. (February 2003). "Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athletics in European salt marshes". Molecular Ecology. 12 (2): 505–515. doi:10.1046/j.1365-294x.2003.01706.x. ISSN   0962-1083. PMID   12535100. S2CID   23544230.
  12. Jiang, Xiao-Long; An, Miao; Zheng, Si-Si; Deng, Min; Su, Zhi-Hao (2017-12-27). "Geographical isolation and environmental heterogeneity contribute to the spatial genetic patterns of Quercus kerrii (Fagaceae)". Heredity. 120 (3): 219–233. doi:10.1038/s41437-017-0012-7. ISSN   0018-067X. PMC   5836588 . PMID   29279604.
  13. "Giraffe Subspecies". Giraffe Conservation Foundation. Archived from the original on 30 June 2015. Retrieved 23 October 2014.
  14. Pellew, R (1984). "The feeding ecology of a selective browser, the giraffe (Giraffa camelopardalis tippelskirchi". Journal of Zoology. 202: 57–81. doi:10.1111/j.1469-7998.1984.tb04288.x.
  15. Fennessy, J (2009). "Home range and seasonal movements of Giraffa camelopardalis angolensis in the northern Namib Desert". African Journal of Ecology. 47 (3): 318–327. doi:10.1111/j.1365-2028.2008.00963.x.
  16. Bercovitch, F.B. (2013). "Herd composition, kinship and fission–fusion social dynamics among wild giraffe". African Journal of Ecology. 51 (2): 206–216. doi: 10.1111/aje.12024 .
  17. Hassanin, A (2007). "Mitochondrial DNA variability in Giraffa camelopardalis: consequences for taxonomy, phylogeography and conservation of giraffes in West and Central Africa". Comptes Rendus Biologies. 330 (3): 265–274. doi:10.1016/j.crvi.2007.02.008. PMID   17434121.
  18. Brown, D. M.; Brenneman, R. A.; Koepfli, K. P.; Pollinger, J. P.; Milá, B.; Georgiadis, N. J.; Wayne, R. K. (2007). "Extensive population genetic structure in the giraffe". BMC Biology. 5 (1): 57. doi: 10.1186/1741-7007-5-57 . PMC   2254591 . PMID   18154651.
  19. "speciation". National Geographic Society. 2011-01-21. Retrieved 2021-09-24.
  20. Baker, Robert J.; Bradley, Robert D. (August 2006). "Speciation in Mammals and the Genetic Species Concept". Journal of Mammalogy. 87 (4): 643–662. doi:10.1644/06-mamm-f-038r2.1. ISSN   0022-2372. PMC   2771874 . PMID   19890476.
  21. Sexton, Jason P.; Hangartner, Sandra B.; Hoffmann, Ary A. (January 2014). "Genetic Isolation by Environment or Distance: Which Pattern of Gene Flow is Most Common?". Evolution. 68 (1): 1–15. doi: 10.1111/evo.12258 . PMID   24111567. S2CID   10975665.
  22. Holt, Robert D.; Gomulkiewicz, Richard (March 1997). "How Does Immigration Influence Local Adaptation? A Reexamination of a Familiar Paradigm". The American Naturalist. 149 (3): 563–572. doi:10.1086/286005. ISSN   0003-0147. S2CID   83733282.
  23. WILLI, Y.; VAN BUSKIRK, J.; SCHMID, B.; FISCHER, M. (March 2007). "Genetic isolation of fragmented populations is exacerbated by drift and selection". Journal of Evolutionary Biology. 20 (2): 534–542. doi: 10.1111/j.1420-9101.2006.01263.x . ISSN   1010-061X. PMID   17305819. S2CID   1324102.
  24. Thomas, Yan; Bethenod, Marie-Thérèse; Pelozuelo, Laurent; Frérot, Brigitte; Bourguet, Denis (February 2003). "Genetic Isolation Between Two Sympatric Host-Plant Races of the European Corn Borer, Ostrinia Nubilalis Hubner I. Sex Pheromone, Moth Emergence Timing, and Parasitism". Evolution. 57 (2): 261–273. doi: 10.1111/j.0014-3820.2003.tb00261.x . ISSN   0014-3820. PMID   12683523. S2CID   221734366.
  25. Habel, Jan Christian; Schmitt, Thomas (March 2012). "The burden of genetic diversity". Biological Conservation. 147 (1): 270–274. doi:10.1016/j.biocon.2011.11.028. ISSN   0006-3207.
  26. Peterson, Merrill A.; Denno, Robert F. (September 1998). "The Influence of Dispersal and Diet Breadth on Patterns of Genetic Isolation by Distance in Phytophagous Insects". The American Naturalist. 152 (3): 428–446. doi:10.1086/286180. ISSN   0003-0147. PMID   18811450. S2CID   3497508.
  27. Haider, Sylvia; Kueffer, Christoph; Edwards, Peter J.; Alexander, Jake M. (September 2012). "Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient". Oecologia. 170 (1): 89–99. Bibcode:2012Oecol.170...89H. doi:10.1007/s00442-012-2291-2. ISSN   0029-8549. PMID   22434406. S2CID   6346092.
  28. Johansson, Per; Ehrlén, Johan (April 2003). "Influence of habitat quantity, quality and isolation on the distribution and abundance of two epiphytic lichens". Journal of Ecology. 91 (2): 213–221. doi: 10.1046/j.1365-2745.2003.00755.x . ISSN   0022-0477. S2CID   90492074.
  29. Kawamura, Kouichi; Kubota, Masashi; Furukawa, Miki; Harada, Yasushi (2007-01-05). "The genetic structure of endangered indigenous populations of the amago salmon, Oncorhynchus masou ishikawae, in Japan". Conservation Genetics. 8 (5): 1163–1176. doi:10.1007/s10592-006-9271-1. ISSN   1566-0621. S2CID   32130367.
  30. Besold, Joachim; Schmitt, Thomas; Tammaru, Toomas; Cassel-Lundhagen, Anna (November 2008). "Strong genetic impoverishment from the centre of distribution in southern Europe to peripheral Baltic and isolated Scandinavian populations of the pearly heath butterfly". Journal of Biogeography. 35 (11): 2090–2101. doi:10.1111/j.1365-2699.2008.01939.x. ISSN   0305-0270. S2CID   84534648.
  31. Peltonen, Leena (1999-10-01). "Positional Cloning of Disease Genes: Advantages of Genetic Isolates". Human Heredity. 50 (1): 66–75. doi:10.1159/000022892. ISSN   0001-5652. PMID   10545759. S2CID   25810192.
  32. Habel, Jan Christian; Schmitt, Thomas (March 2012). "The burden of genetic diversity". Biological Conservation. 147 (1): 270–274. doi:10.1016/j.biocon.2011.11.028. ISSN   0006-3207.
  33. Luque-Larena, Juan J.; Mougeot, Francois; Viñuela, Javier; Jareño, Daniel; Arroyo, Leticia; Lambin, Xavier; Arroyo, Beatriz (August 2013). "Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain". Basic and Applied Ecology. 14 (5): 432–441. doi:10.1016/j.baae.2013.04.006. hdl: 10261/142920 . ISSN   1439-1791.
  34. Gerlach, Gabriele; Musolf, Kerstin (2000-08-15). "Fragmentation of Landscape as a Cause for Genetic Subdivision in Bank Voles". Conservation Biology. 14 (4): 1066–1074. doi:10.1046/j.1523-1739.2000.98519.x. ISSN   0888-8892. S2CID   84124977.
  35. Ascensão, Fernando; Mata, Cristina; Malo, Juan E.; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P.; Santos-Reis, Margarida; Fernandes, Carlos (2016-03-15). "Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns". PLOS ONE. 11 (3): e0151500. Bibcode:2016PLoSO..1151500A. doi: 10.1371/journal.pone.0151500 . ISSN   1932-6203. PMC   4792435 . PMID   26978779.
  36. Parra, Guido J.; Cagnazzi, Daniele; Jedensjö, Maria; Ackermann, Corinne; Frere, Celine; Seddon, Jennifer; Nikolic, Natacha; Krützen, Michael (April 2018). "Low genetic diversity, limited gene flow, and widespread genetic bottleneck effects in a threatened dolphin species, the Australian humpback dolphin". Biological Conservation. 220: 192–200. doi:10.1016/j.biocon.2017.12.028. ISSN   0006-3207.