Geopolymer

Last updated

A geopolymer is a vague pseudo-chemical term used to describe inorganic, typically bulk ceramic-like material that forms covalently bonded, non-crystalline (amorphous) networks, often intermingled with other phases. Many geopolymers may also be classified as alkali-activated cements or acid-activated binders. They are mainly produced by a chemical reaction between a chemically reactive aluminosilicate powder e.g. metakaolin or other clay-derived powders, natural pozzolan, or suitable glasses, and an aqueous solution (alkaline or acidic) that causes this powder to react and re-form into a solid monolith. The most common pathway to produce geopolymers is by the reaction of metakaolin with sodium silicate, which is an alkaline solution, but other processes are also possible. [1]

Contents

Commercially produced geopolymers may be used for fire- and heat-resistant coatings and adhesives, medicinal applications, high-temperature ceramics, new binders for fire-resistant fiber composites, toxic and radioactive waste encapsulation, and as cementing components in making or repairing concretes. The properties and uses of geopolymers are being explored in many scientific and industrial disciplines such as modern inorganic chemistry, physical chemistry, colloid chemistry, mineralogy, geology, and in other types of engineering process technologies.

The term geopolymer was coined by Joseph Davidovits in 1978 due to the rock-forming minerals of geological origin used in the synthesis process. [2] These materials and associated terminology were popularized over the following decades via his work with the Institut Géopolymère (Geopolymer Institute).

Geopolymers are synthesized in one of two conditions:

The alkaline route is the most important in terms of research and development and commercial applications. Details on the acidic route have also been published. [3] [4]

Composition

In the 1950s, Viktor Glukhovsky developed concrete materials originally known as "soil silicate concretes" and "soil cements", [5] but since the introduction of the geopolymer concept by Joseph Davidovits, the terminology and definitions of the word geopolymer have become more diverse and often conflicting. The word geopolymer is sometimes used to refer to naturally occurring organic macromolecules; [6] that sense of the word differs from the now-more-common use of this terminology to discuss inorganic materials which can have either cement-like or ceramic-like character.

A geopolymer is essentially a mineral chemical compound or mixture of compounds consisting of repeating units, for example silico-oxide (-Si-O-Si-O-), silico-aluminate (-Si-O-Al-O-), ferro-silico-aluminate (-Fe-O-Si-O-Al-O-) or alumino-phosphate (-Al-O-P-O-), created through a process of geopolymerization. [7] This method of describing mineral synthesis (geosynthesis) was first presented by Davidovits at an IUPAC symposium in 1976. [8]

Even within the context of inorganic materials, there exist various definitions of the word geopolymer, which can include a relatively wide variety of low-temperature synthesized solid materials. [9] The most typical geopolymer is generally described as resulting from the reaction between metakaolin (calcined kaolinitic clay) and a solution of sodium or potassium silicate (waterglass). Geopolymerization tends to result in a highly connected, disordered network of negatively charged tetrahedral oxide units balanced by the sodium or potassium ions.

In the simplest form, an example chemical formula for a geopolymer can be written as Na2O·Al2O3·nSiO2·wH2O, where n is usually between 2 and 4, and w is around 11-15. Geopolymers can be formulated with a wide variety of substituents in both the framework (silicon, aluminium) and non-framework (sodium) sites; most commonly potassium or calcium takes on the non-framework sites, but iron or phosphorus can in principle replace some of the aluminum or silicon.[ citation needed ]

Geopolymerization usually occurs at ambient or slightly elevated temperature; the solid aluminosilicate raw materials (e.g. metakaolin) dissolve into the alkaline solution, then cross-link and polymerize into a growing gel phase, which then continues to set, harden, and gain strength.

Geopolymer synthesis

Covalent bonding

The fundamental unit within a geopolymer structure is a tetrahedral complex consisting of silicon or aluminum coordinated through covalent bonds to four oxygens. The geopolymer framework results from the cross-linking between these tetrahedra, which leads to a 3-dimensional aluminosilicate network, where the negative charge associated with tetrahedral aluminium is balanced by a small cationic species, most commonly an alkali metal cation (Na+, K+ etc). These alkali metal cations are often ion-exchangeable, as they are associated with, but only loosely bonded to the main covalent network, similarly to the non-framework cations present in zeolites.

Oligomer formation

Five oligomer species named according to the sialate/siloxo nomenclature scheme Geopolymer oligomer molecules.jpg
Five oligomer species named according to the sialate/siloxo nomenclature scheme

Geopolymerization is the process of combining many small molecules known as oligomers into a covalently bonded network. This reaction process takes place via formation of oligomers (dimer, trimer, tetramer, pentamer) which are believed to contribute to the formation of the actual structure of the three-dimensional macromolecular framework, either through direct incorporation or through rearrangement via monomeric species.[ citation needed ] These oligomers are named by some geopolymer chemists as sialates following the scheme developed by Davidovits, [2] although this terminology is not universally accepted within the research community due in part to confusion with the earlier (1952) use of the same word to refer to the salts of the important biomolecule sialic acid. [10]

The image shows five examples of small oligomeric potassium aluminosilicate species (labelled in the diagram according to the poly(sialate) / poly(sialate-siloxo) nomenclature), which are key intermediates in potassium-based alumino-silicate geopolymerization. The aqueous chemistry of aluminosilicate oligomers is complex, [11] and plays an important role in the discussion of zeolite synthesis, a process which has many details in common with geopolymerization.

Example of geopolymerization of a metakaolin precursor, in an alkaline medium [12]

The reaction process broadly involves four main stages:

The reaction processes involving other aluminosilicate precursors (e.g. low-calcium fly ash, crushed or synthetic glasses, natural pozzolans) are broadly similar to the steps described above.

Geopolymer 3D-frameworks and water

Example of a depiction of the 3D framework of a geopolymer, undergoing a dehydration and dehydroxylation process upon heating Geopolymer 3D-framework.jpg
Example of a depiction of the 3D framework of a geopolymer, undergoing a dehydration and dehydroxylation process upon heating

Geopolymerization forms aluminosilicate frameworks that are similar to those of some rock-forming minerals, but lacking in long-range crystalline order, and generally containing water in both chemically bound sites (hydroxyl groups) and in molecular form as pore water. This water can be removed at temperatures above 100 – 200°C. Cation hydration and the locations, and mobility of water molecules in pores are important for lower-temperature applications, such as in usage of geopolymers as cements. [13] [14] The figure shows a geopolymer containing both bound (Si-OH groups) and free water (left in the figure). Some water is associated with the framework similarly to zeolitic water, and some is in larger pores and can be readily released and removed. After dehydroxylation (and dehydration), generally above 250°C, geopolymers can then crystallise above 800-1000°C (depending on the nature of the alkali cation present). [15]

Commercial applications

There exists a wide variety of potential and existing applications. Some of the geopolymer applications are still in development, whereas others are already industrialized and commercialized. [16] They are listed in three major categories:

Geopolymer cements and concretes

Geopolymer resins and binders

Arts and archaeology

Geopolymer cements

From a terminological point of view, geopolymer cement [17] is a binding system that hardens at room temperature, like regular Portland cement.

List of the minerals, chemicals used for making geopolymer cements GP-cement-ingredients.jpg
List of the minerals, chemicals used for making geopolymer cements

Geopolymer cement is being developed and utilised as an alternative to conventional Portland cement for use in transportation, infrastructure, construction and offshore applications.[ citation needed ]

Production of geopolymer cement requires an aluminosilicate precursor material such as metakaolin or fly ash, a user-friendly alkaline reagent [18] [ promotional source? ] (for example, sodium or potassium soluble silicates with a molar ratio (MR) SiO2:M2O ≥ 1.65, M being sodium or potassium) and water (See the definition for "user-friendly" reagent below). Room temperature hardening is more readily achieved with the addition of a source of calcium cations, often blast furnace slag.[ citation needed ]

Geopolymer cements can be formulated to cure more rapidly than Portland-based cements; some mixes gain most of their ultimate strength within 24 hours. However, they must also set slowly enough that they can be mixed at a batch plant, either for pre-casting or delivery in a concrete mixer. Geopolymer cement also has the ability to form a strong chemical bond with silicate rock-based aggregates.[ citation needed ]

There is often confusion between the meanings of the terms 'geopolymer cement' and 'geopolymer concrete'. A cement is a binder, whereas concrete is the composite material resulting from the mixing and hardening of cement with water (or an alkaline solution in the case of geopolymer cement), and stone aggregates. Materials of both types (geopolymer cements and geopolymer concretes) are commercially available in various markets internationally.[ citation needed ]

Alkali-activated materials vs. geopolymer cements

There exists some confusion in the terminology applied to geopolymers, alkali-activated cements and concretes, and related materials, which have been described by a variety of names including also "soil silicate concretes" and "soil cements". [5] Terminology related to alkali-activated materials or alkali-activated geopolymers is also in wide (but debated) use. These cements, sometimes abbreviated AAM, encompass the specific fields of alkali-activated slags, alkali-activated coal fly ashes, and various blended cementing systems.

User-friendly alkaline-reagents

List of user-hostile and user-friendly chemical reagents Hostile and User Friendly ingredients.jpg
List of user-hostile and user-friendly chemical reagents

Geopolymerization uses chemical ingredients that may be dangerous and therefore requires some safety procedures. Material Safety rules classify the alkaline products in two categories: corrosive products (named here: hostile) and irritant products (named here: friendly).[ citation needed ]

The table lists some alkaline chemicals and their corresponding safety labels. [19] Alkaline reagents belonging to the second (less elevated pH) class may also be termed as User-friendly, although the irritant nature of the alkaline component and the potential inhalation risk of powders still require the selection and use of appropriate personal protective equipment, as in any situation where chemicals or powders are handled.

The development of some alkali-activated-cements, as shown in numerous published recipes (especially those based on fly ashes) use alkali silicates with molar ratios SiO2:M2O below 1.20, or are based on concentrated NaOH. These conditions are not considered so user-friendly as when more moderate pH values are used, and require careful consideration of chemical safety handling laws, regulations, and state directives.

Conversely, geopolymer cement recipes employed in the field generally involve alkaline soluble silicates with starting molar ratios ranging from 1.45 to 1.95, particularly 1.60 to 1.85, i.e. user-friendly conditions. It may happen that for research, some laboratory recipes have molar ratios in the 1.20 to 1.45 range.

Examples of materials that are sometimes called geopolymer cements

Commercial geopolymer cements were developed in the 1980s, of the type (K,Na,Ca)-aluminosilicate (or "slag-based geopolymer cement") and resulted from the research carried out by Joseph Davidovits and J.L. Sawyer at Lone Star Industries, USA, marketed as Pyrament® cement. The US patent 4,509,985 was granted on April 9, 1985 with the title 'Early high-strength mineral polymer'. [20]

In the 1990s, using knowledge of the synthesis of zeolites from fly ashes, Wastiels et al., [21] Silverstrim et al. [22] and van Jaarsveld and van Deventer [23] developed geopolymeric fly ash-based cements.

Materials based on siliceous (EN 197), also called class F (ASTM C618), fly ashes are known:

In many (but not all) cases requires heat curing at 60-80°C; not manufactured separately as a cement, but rather produced directly as a fly-ash based concrete. NaOH + fly ash: partially-reacted fly ash particles embedded in an alumino-silicate gel with Si:Al= 1 to 2, zeolitic type (chabazite-Na and sodalite) structures.
Room-temperature cement hardening. Alkali metal silicate solution + blast furnace slag + fly ash: fly ash particles embedded in a geopolymeric matrix with Si:Al ~ 2. Can be produced with "user-friendly" (not extremely high pH) activating solutions.

The properties of iron-containing "ferri-sialate"-based geopolymer cements are similar to those of rock-based geopolymer cements but involve geological elements, or metallurgical slags, with high iron oxide content. The hypothesised binder chemistry is (Ca,K)-(Fe-O)-(Si-O-Al-O). [26]

Rock-based geopolymer cements can be formed by the reaction of natural pozzolanic materials under alkaline conditions, [27] and geopolymers derived from calcined clays (e.g. metakaolin) can also be produced in the form of cements.

CO2 emissions during manufacturing

Geopolymer cements may be able to be designed to have a lower attributed emission of carbon dioxide CO2 than some other widely-used materials such as Portland cement. [28] Geopolymers use industrial byproducts/waste containing aluminosilicate phases in manufacturing, which minimizes CO₂ emissions and has a lower environmental impact. [29]

The need for standards

In June 2012, the institution ASTM International organized a symposium on Geopolymer Binder Systems. The introduction to the symposium states:[ citation needed ]When performance specifications for Portland cement were written, non-portland binders were uncommon...New binders such as geopolymers are being increasingly researched, marketed as specialty products, and explored for use in structural concrete. This symposium is intended to provide an opportunity for ASTM to consider whether the existing cement standards provide, on the one hand, an effective framework for further exploration of geopolymer binders and, on the other hand, reliable protection for users of these materials.

The existing Portland cement standards are not adapted to geopolymer cements; they must be elaborated by an ad hoc committee. Yet, to do so requires the presence of standard geopolymer cements. Presently, every expert is presenting their own recipe based on local raw materials (wastes, by-products or extracted). There is a need for selecting the right geopolymer cement category. The 2012 State of the Geopolymer R&D, [30] suggested to select two categories, namely:

along with the appropriate user-friendly geopolymeric reagent.

Health effects

Geopolymers as ceramics

Geopolymers can be used as a low-cost and/or chemically flexible route to ceramic production, both to produce monolithic specimens, and as the continuous (binder) phase in composites with particulate or fibrous dispersed phases. [31]

Room-temperature processed materials

Geopolymers produced at room temperature are typically hard, brittle, castable, and mechanically strong. This combination of characteristics offers the opportunity for their usage in a variety of applications in which other ceramics (e.g. porcelain) are conventionally used. Some of the first patented applications of geopolymer-type materials - actually predating the coining of the term geopolymer by multiple decades - relate to use in automobile spark plugs. [32]

Thermal processing of geopolymers to produce ceramics

It is also possible to use geopolymers as a versatile pathway to produce crystalline ceramics or glass-ceramics, by forming a geopolymer through room-temperature setting, and then heating (calcining) it at the necessary temperature to convert it from the crystallographically disordered geopolymer form to achieve the desired crystalline phases (e.g. leucite, pollucite and others). [33]

Geopolymer applications in arts and archaeology

Because geopolymer artifacts can look like natural stone, several artists started to cast in silicone rubber molds replicas of their sculptures. For example, in the 1980s, the French artist Georges Grimal worked on several geopolymer castable stone formulations. [34]

Egyptian pyramid stones

In the mid-1980s, Joseph Davidovits presented his first analytical results carried out on samples sourced from Egyptian pyramids. He claimed that the ancient Egyptians used a geopolymeric reaction to make re-agglomerated limestone blocks. [35] [36] [37] Later on, several materials scientists and physicists took over these archaeological studies and have published results on pyramid stones, claiming synthetic origins. [38] [39] [40] [41] However, the theories of synthetic origin of pyramid stones have also been stridently disputed by other geologists, materials scientists, and archaeologists. [42]

Roman cements

It has also been claimed that the Roman lime-pozzolan cements used in the building of some important structures, especially works related to water storage (cisterns, aqueducts), have chemical parallels to geopolymeric materials. [43]

See also

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Cement</span> Hydraulic binder used in the composition of mortar and concrete

A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.

<span class="mw-page-title-main">Silicate</span> Any polyatomic anion containing silicon and oxygen

A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula [SiO(4-2x)−
4−x
]
n
, where 0 ≤ x < 2. The family includes orthosilicate SiO4−4, metasilicate SiO2−3, and pyrosilicate Si2O6−7. The name is also used for any salt of such anions, such as sodium metasilicate; or any ester containing the corresponding chemical group, such as tetramethyl orthosilicate. The name "silicate" is sometimes extended to any anions containing silicon, even if they do not fit the general formula or contain other atoms besides oxygen; such as hexafluorosilicate [SiF6]2−. Most commonly, silicates are encountered as silicate minerals.

<span class="mw-page-title-main">Potassium hydroxide</span> Inorganic compound (KOH)

Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash.

Sodium silicate is a generic name for chemical compounds with the formula Na
2x
Si
y
O
2y+x
or (Na
2
O)
x
·(SiO
2
)
y
, such as sodium metasilicate, sodium orthosilicate, and sodium pyrosilicate. The anions are often polymeric. These compounds are generally colorless transparent solids or white powders, and soluble in water in various amounts.

<span class="mw-page-title-main">Pozzolana</span> Natural siliceous or siliceous-aluminous material

Pozzolana or pozzuolana, also known as pozzolanic ash, is a natural siliceous or siliceous-aluminous material which reacts with calcium hydroxide in the presence of water at room temperature. In this reaction insoluble calcium silicate hydrate and calcium aluminate hydrate compounds are formed possessing cementitious properties. The designation pozzolana is derived from one of the primary deposits of volcanic ash used by the Romans in Italy, at Pozzuoli. The modern definition of pozzolana encompasses any volcanic material, predominantly composed of fine volcanic glass, that is used as a pozzolan. Note the difference with the term pozzolan, which exerts no bearing on the specific origin of the material, as opposed to pozzolana, which can only be used for pozzolans of volcanic origin, primarily composed of volcanic glass.

<span class="mw-page-title-main">Potassium silicate</span> Chemical compound

Potassium silicate is the name for a family of inorganic compounds. The most common potassium silicate has the formula K2SiO3, samples of which contain varying amounts of water. These are white solids or colorless solutions.

Silicate mineral paints or mineral colors are paint coats with mineral binding agents. Two relevant mineral binders play a role in the field of colors: Lime and silicate.

<span class="mw-page-title-main">Concrete recycling</span> Re-use of rubble from demolished concrete structures

Concrete recycling is the use of rubble from demolished concrete structures. Recycling is cheaper and more ecological than trucking rubble to a landfill. Crushed rubble can be used for road gravel, revetments, retaining walls, landscaping gravel, or raw material for new concrete. Large pieces can be used as bricks or slabs, or incorporated with new concrete into structures, a material called urbanite.

Joseph Davidovits is a French materials scientist. He posited that the blocks of the Great Pyramid are not carved stone but mostly a form of limestone concrete or man-made stone.

<span class="mw-page-title-main">Sodium metasilicate</span> Chemical compound

Sodium metasilicate is the chemical substance with formula Na
2
SiO
3
, which is the main component of commercial sodium silicate solutions. It is an ionic compound consisting of sodium cations Na+
and the polymeric metasilicate anions [–SiO2−
3
–]n. It is a colorless crystalline hygroscopic and deliquescent solid, soluble in water but not in alcohols.

Aluminosilicate refers to materials containing anionic Si-O-Al linkages. Commonly, the associate cations are sodium (Na+), potassium (K+) and protons (H+). Such materials occur as minerals, coal combustion products and as synthetic materials, often in the form of zeolites. Both synthetic and natural aluminosilicates are of technical significance as structural materials, catalysts, and reagents.

Metakaolin is the anhydrous calcined form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume.

<span class="mw-page-title-main">Pozzolan</span> Siliceous volcanic ashes commonly used as supplementary cementitious material

Pozzolans are a broad class of siliceous and aluminous materials which, in themselves, possess little or no cementitious value but which will, in finely divided form and in the presence of water, react chemically with calcium hydroxide (Ca(OH)2) at ordinary temperature to form compounds possessing cementitious properties. The quantification of the capacity of a pozzolan to react with calcium hydroxide and water is given by measuring its pozzolanic activity. Pozzolana are naturally occurring pozzolans of volcanic origin.

<span class="mw-page-title-main">Coal combustion products</span> By-products of coal combustion

Coal combustion products (CCPs), also called coal combustion wastes (CCWs) or coal combustion residuals (CCRs), are categorized in four groups, each based on physical and chemical forms derived from coal combustion methods and emission controls:

<span class="mw-page-title-main">Alkali–silica reaction</span> Chemical reaction damaging concrete

The alkali–silica reaction (ASR), also commonly known as concrete cancer, is a deleterious internal swelling reaction that occurs over time in concrete between the highly alkaline cement paste and the reactive amorphous silica found in many common aggregates, given sufficient moisture.

The pozzolanic activity is a measure for the degree of reaction over time or the reaction rate between a pozzolan and Ca2+ or calcium hydroxide (Ca(OH)2) in the presence of water. The rate of the pozzolanic reaction is dependent on the intrinsic characteristics of the pozzolan such as the specific surface area, the chemical composition and the active phase content.

<span class="mw-page-title-main">Polymer soil stabilization</span> Engineering technique

Polymer soil stabilization refers to the addition of polymers to improve the physical properties of soils, most often for geotechnical engineering, construction, or agricultural projects. Even at very small concentrations within soils, various polymers have been shown to increase water retention and reduce erosion, increase soil shear strength, and support soil structure. A wide range of polymers have been used to address problems ranging from the prevention of desertification to the reinforcement of roadbeds.

Geopolymer bonded wood composite (GWC) are similar and a green alternatives to cement bonded wood composites. These products are composed of geopolymer binder, wood fibers/ wood particles. Depending on the wood and geopolymer ratio in the material, the properties of the wood-geopolymer composite material vary.

<span class="mw-page-title-main">Susan Bernal</span> Colombian materials scientist

Susan Andrea Bernal López is a Colombian materials scientist who is Professor of Sustainable Construction Materials at the University of Bath. Her research considers design, development and characterisation of novel cements and concretes. She was awarded the 2020 Institute of Materials, Minerals and Mining Rosenhain Medal and Prize.

References

  1. W.M. Kriven, C. Leonelli, J.L. Provis, A.R. Boccaccini, C. Attwell, V.S. Ducman, C. Ferone, S. Rossignol, T. Luukkonen, J.S.J. van Deventer, J.V. Emiliano, J.E. Lombardi (2024), Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. Journal of the American Ceramic Society, https://doi.org/10.1111/jace.19828
  2. 1 2 An article published by the Commission of the European Communities in 1982 outlines the reasons why the generic term geopolymer was chosen for this new chemistry. See: J. Davidovits, The Need to Create a New Technical Language For the Transfer of Basic Scientific Information, in Transfer and Exploitation of Scientific and Technical Information, Proceedings of the symposium, Luxemburg, 10–12 June 1981, pp. 316-320. http://bookshop.europa.eu/en/transfer-and-exploitation-of-scientific-and-technical-information-pbCD3381271/
  3. Wagh, A.S. (2004). Chemically Bonded Phosphate Ceramics – A Novel Class of Geopolymers. Proceedings of the 106th annual meeting of the American Ceramic Society, Indianapolis. See also, Chapter 13, Phosphate-based Geopolymers, in J. Davidovits' book Geopolymer Chemistry and Applications.
  4. Perera, D.S., Hanna, J.V., Davis, J., Blackford, M.G., Latella, B.A., Sasaki, Y. and Vance E.R. (2008). Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials. J. Mater. Sci.,43, 6562–6566.
  5. 1 2 Gluchovskij V.D. (1959). "Gruntosilikaty" Gosstrojizdat Kiev, Patent USSR 245 627 (1967), Patent USSR 449894 (Patent appl. 1958, granted 1974).
  6. Kim, D.; Lai, H.T.; Chilingar, G.V.; Yen T.F. (2006). Geopolymer formation and its unique properties, Environ. Geol,51(1), 103–111.
  7. See http://www.geopolymer.org/science/introduction
  8. Pdf-file #20 Milestone paper IUPAC 76 at http://www.geopolymer.org/category/library/technical-papers
  9. See, Discussion at the Geopolymer Camp 2012, video Geopolymer definition in Wikipedia at http://www.geopolymer.org/camp/gp-camp-2012 Archived 2013-04-15 at archive.today .
  10. Provis, J.L. and Van Deventer, J.S.J. (2009). Introduction to geopolymers, in: Geopolymers: Structure, Processing, Properties and Industrial Applications, J.L. Provis & Van Deventer (eds.), Woodhead, Cambridge UK, pp. 1–11
  11. Swaddle, T.W., Salerno, J., and Tregloan, P.A. (1994). Aqueous aluminates, silicates, and aluminosilicates, Chemical Society Reviews, 23 (5), 319–325
  12. See at http://www.geopolymer.org/science/about-geopolymerization
  13. Barbosa, V.F.F; MacKenzie, K.J.D. and Thaumaturgo, C., (2000). Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, International Journal of Inorganic Materials, 2, pp. 309–317.
  14. Rowles, M.R. (2004). The Structural Nature of Aluminosilicate Inorganic Polymers: a Macro to Nanoscale Study, PhD Thesis, Curtin University of Technology, Perth, Australia.
  15. Duxson, P.; Lukey, G.C., and van Deventer, J.S.J. (2007). The thermal evolution of metakaolin geopolymers: Part 2 – Phase stability and structural development, Journal of Non-Crystalline Solids, 353, pp. 2186-2200.
  16. http://www.geopolymer.org/about/business-fellows [ bare URL ]
  17. Davidovits, J., (1991). Geopolymers: Inorganic Polymeric New Materials, J. Thermal Analysis, 37, 1633–1656. See also Chapter 24 in Geopolymer Chemistry and Applications, Joseph Davidovits, Institut Géopolymère, Saint-Quentin, France, 2008, ISBN 9782951482050 (3rd ed., 2011).
  18. See the examples at the Geopolymer Institute page http://www.geopolymer.org/applications/geopolymer-cement
  19. See in ref. 2
  20. Davidovits, J. and Sawyer, J.L., (1985). Early high-strength mineral polymer, US Patent 4,509,985, 1985, filed February 22, 1984. The first commercial geopolymer cement was coined Pyrament 2000™ designed for repair and patching operations.
  21. Wastiels J., Wu X., Faignet S., and Patfoort G. (1994). Mineral polymer based on fly ash, Journal of Resource Management and Technology, 22 (3), 135-141
  22. Silverstrim, T.; Rostami, H.; Larralde, J.C and Samadi-Maybodi, A. (1997). Fly ash cementitious material and method of making a product, US Patent 5,601,643.
  23. Van Jaarsveld, J.G.S., van Deventer, J.S.J. and Lorenzen L. (1997). The potential use of geopolymeric materials to immobilize toxic metals: Part I. Theory and Applications, Minerals Engineering, 10 (7), 659–669.
  24. Palomo, A.; Grutzeck, M.W. and Blanco, M.T. (1999). Alkali-activated fly ashes: a cement for the future, Cement Concrete Res, 29, 1323–1329.
  25. Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H. and Fernández-Pereira, C., (2009). Coal fly ash-based geopolymers: microstructure and metal leaching, Journal of Hazardous Materials, 166, 561–566.
  26. Davidovits, J. et al., Geopolymer cement of the Calcium-Ferroaluminium silicate polymer type and production process, PCT patent publication WO 2012/056125.
  27. Gimeno, D.; Davidovits, J.; Marini, C.; Rocher, P.; Tocco, S.; Cara, S.; Diaz, N.; Segura, C. and Sistu, G. (2003). Development of silicate-based cement from glassy alkaline volcanic rocks: interpretation of preliminary data related to chemical- mineralogical composition of geologic raw materials. Bol. Soc. Esp. Cerám. Vidrio, 42, 69–78. [Results from the European Research Project GEOCISTEM (1997), Cost Effective Geopolymeric Cements For Innocuous Stabilisation of Toxic Elements, Final Technical Report, April 30, 1997, Brussels, Project funded by the European Commission, Brite-Euram BE-7355-93, Jan. 1, 1994 to Feb. 28, 1997].
  28. Rangan, B.V., (2008). Low-Calcium Fly Ash-Based Geopolymer Concrete, Chapter 26, in Concrete Construction Engineering Handbook, Editor-in-Chief E.G. Nawy, Second Edition, CRC Press, New York.
  29. Correia Vasco, Joel Oliveira; De Amorim Almeida, Henrique; Bento Capela, Carlos Alexandre, eds. (2023). Progress in Digital and Physical Manufacturing. Springer Tracts in Additive Manufacturing. doi:10.1007/978-3-031-33890-8. hdl:10400.8/8622. ISBN   978-3-031-33889-2.{{cite book}}: Missing |editor3= (help)
  30. See the video at http://www.geopolymer.org/camp/gp-camp-2012 Archived 2013-04-15 at archive.today
  31. Kriven, Waltraud M.; Leonelli, Cristina; Provis, John L.; Boccaccini, Aldo R.; Attwell, Cyril; Ducman, Vilma S.; Ferone, Claudio; Rossignol, Sylvie; Luukkonen, Tero; van Deventer, Jannie S. J.; Emiliano, José V.; Lombardi, Jérôme E. (August 2024). "Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution". Journal of the American Ceramic Society. 107 (8): 5159–5177. doi:10.1111/jace.19828. ISSN   0002-7820.
  32. Schwartzwalder, K and Ortman, C.D. (1957), Sodium silicate type cement, U.S. Patent 2,793,956, General Motors Corporation
  33. Bell, J.L.; Driemeyer, P.; Kriven, W.M. (2009) Formation of ceramics from metakaolin‐based geopolymers: Part I—Cs‐based geopolymer, and Part II-K-based geopolymer, Journal of the American Ceramic Society92, 1-18 and 607-615
  34. http://www.geopolymer.org/applications/potential-utilizations-in-art-and-decoration  ; also article #19 Dramatized sculptures with geopolymers, at http://www.geopolymer.org/category/library/technical-papers/
  35. Davidovits, J. (1986). X-Rays Analysis and X-Rays Diffraction of Casing Stones from the Pyramids of Egypt, and the Limestone of the Associated Quarries; pp. 511–20 in Science in Egyptology Symposia, Edited by R. A. David, Manchester University Press, Manchester, U.K. (Pdf-file #A in the Geopolymer Institute Library, Archaeological Papers)
  36. Davidovits J., (1987). Ancient and modern concretes: what is the real difference? Concrete International: Des. Constr, 9 [12], 23–29.
  37. Davidovits, J. and Morris, M., (1988). The Pyramids: An Enigma Solved. Hippocrene Books, New York, 1988.
  38. Demortier, G. (2004). PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops at Giza, Nuclear Instruments and Methods, Physics Research B, 226, 98–109.
  39. Barsoum, M.W.; Ganguly, A. and Hug, G. (2006). Microstructural Evidence of Reconstituted Limestone Blocks in the Great Pyramids of Egypt, J. Am. Ceram. Soc.89[12], 3788–3796.
  40. MacKenzie, Kenneth J.D.; Smith, Mark E.; Wong, Alan; Hanna, John V.; Barry, Bernard and Barsoum, Michel W. (2011). Were the casing stones of Senefru's Bent Pyramid in Dahshour cast or carved? Multinuclear NMR evidence, Materials Letters65, 350–352.
  41. Túnyi, I. and El-hemaly, I. A. (2012). Paleomagnetic investigation of the great egyptian pyramids, Europhysics News43/6, 28-31.
  42. Klemm, D. and Klemm, R. (2010) The Stones of the Pyramids: Provenance of the Building Stones of the Old Kingdom Pyramids of Egypt, De Gryuter, Berlin/New York, pp. 81-82, and references cited therein
  43. Davidovits J. and Davidovits F. Geopolymer ’99 Proceedings, 283–295; Davidovits J., Geopolymer Chemistry and Applications, Section 17.4.