GlnALG operon

Last updated

The glnALG operon is an operon that regulates the nitrogen content of a cell. It codes for the structural gene glnA the two regulatory genes glnL and glnG. glnA encodes glutamine synthetase, an enzyme which catalyzes the conversion of glutamate and ammonia to glutamine, thereby controlling the nitrogen level in the cell. glnG encodes NRI which regulates the expression of the glnALG operon at three promoters, which are glnAp1, glnAp2 located upstream of glnA) and glnLp (intercistronic glnA-glnL region). glnL encodes NRII which regulates the activity of NRI. [1] No significant homology is found in Eukaryotes.

Contents

Structure

The glnALG has three structural genes:

Physiological significance of glnALG

glnALG operon, along with the glnD and glnF and their gene products, plays an extremely important role in regulating the nitrogen level inside the cell. It also plays a role in the ammonium (methylammonium) transport system (Amt). Hence it increases the ammonia content of the cell when grown on glutamine or glutamate.

Hence along with histidase, glnALG operon maintains homeostasis within the cell.

Mechanism of Regulation

The picture depicts the mechanism of regulation of glnALG operon GlnALG operon.jpeg
The picture depicts the mechanism of regulation of glnALG operon

The glnALG operon is regulated by an intricate network of repressors and activators. Along with NRI and NRII, there are gene products of glnF and glnD which play a key role in this network. The expression of the glnALG operon is regulated by the NRI at three promoters: glnAp1, glnAp2 and glnLp. The initiation of transcription at glnAp1 is stimulated exclusively under carbon starvation conditions and stationary phase during which cAMP accumulates in high concentration in the cell. The binding of cAMP to the catabolite activator protein (CAP) causes CAP to bind to a specific DNA site in glnAp1, and glnAp1 is repressed by NRI. Initiation of transcription at glnAp2 requires the activated form of NRI, i.e. NRI–P(phosphorylated NRI), as well as the glnF gene product, σ54, [3] and it is regulated by NRII. NRII in the presence of ATP, catalyzes the transfer of ϒ-phosphate of ATP to NRI. In the presence of PII, which is encoded by glnB, NRII catalyzes the dephosphorylation of NRI–P.

The nitrogen content in the cell is directly proportional to the ratio of concentration of glutamine to the concentration of 2-ketoglutarate. When nitrogen content is lower, the product of glnD gene, uridylyl transferase catalyzes the conversion of PII to give PII-UMP, hampering PII's ability of dephosphorylating NRI–P. Uridylyl transferase catalyzes this reaction because the high concentration of 2-ketoglutarate allosterically activates it. In the case of high nitrogen, there is excess of NRI which represses the transcription of the promoters glnAp1, glnAp2 and glnLp, which in turn represses the synthesis of glutamine synthetase. [4] [5]

Related Research Articles

In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product. The result of this is that the genes contained in the operon are either expressed together or not at all. Several genes must be co-transcribed to define an operon.

<span class="mw-page-title-main">Glutamate dehydrogenase</span> Hexameric enzyme

Glutamate dehydrogenase is an enzyme observed in both prokaryotes and eukaryotic mitochondria. The aforementioned reaction also yields ammonia, which in eukaryotes is canonically processed as a substrate in the urea cycle. Typically, the α-ketoglutarate to glutamate reaction does not occur in mammals, as glutamate dehydrogenase equilibrium favours the production of ammonia and α-ketoglutarate. Glutamate dehydrogenase also has a very low affinity for ammonia, and therefore toxic levels of ammonia would have to be present in the body for the reverse reaction to proceed. However, in brain, the NAD+/NADH ratio in brain mitochondria encourages oxidative deamination. In bacteria, the ammonia is assimilated to amino acids via glutamate and aminotransferases. In plants, the enzyme can work in either direction depending on environment and stress. Transgenic plants expressing microbial GLDHs are improved in tolerance to herbicide, water deficit, and pathogen infections. They are more nutritionally valuable.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Glutamine synthetase</span> Class of enzymes

Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine:

<i>Rhodospirillum rubrum</i> Species of bacterium

Rhodospirillum rubrum is a Gram-negative, pink-coloured bacterium, with a size of 800 to 1000 nanometers. It is a facultative anaerobe, thus capable of using oxygen for aerobic respiration under aerobic conditions, or an alternative terminal electron acceptor for anaerobic respiration under anaerobic conditions. Alternative terminal electron acceptors for R. rubrum include dimethyl sulfoxide or trimethylamine oxide.

Carbamoyl phosphate synthetase I is a ligase enzyme located in the mitochondria involved in the production of urea. Carbamoyl phosphate synthetase I transfers an ammonia molecule to a molecule of bicarbonate that has been phosphorylated by a molecule of ATP. The resulting carbamate is then phosphorylated with another molecule of ATP. The resulting molecule of carbamoyl phosphate leaves the enzyme.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid biosynthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">Spot 42 RNA</span>

Spot 42 (spf) RNA is a regulatory non-coding bacterial small RNA encoded by the spf gene. Spf is found in gammaproteobacteria and the majority of experimental work on Spot42 has been performed in Escherichia coli and recently in Aliivibrio salmonicida. In the cell Spot42 plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex.

<span class="mw-page-title-main">Asparagine synthetase</span> Mammalian protein found in Homo sapiens

Asparagine synthetase is a chiefly cytoplasmic enzyme that generates asparagine from aspartate. This amidation reaction is similar to that promoted by glutamine synthetase. The enzyme is ubiquitous in its distribution in mammalian organs, but basal expression is relatively low in tissues other than the exocrine pancreas.

<span class="mw-page-title-main">Anthranilate synthase</span>

The enzyme anthranilate synthase catalyzes the chemical reaction

In enzymology, a [glutamate—ammonia-ligase] adenylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a [protein-PII] uridylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glutamine riboswitch</span> Glutamine-binding RNA structure

The glutamine riboswitch is a conserved RNA structure that was predicted by bioinformatics. It is present in a variety of lineages of cyanobacteria, as well as some phages that infect cyanobacteria. It is also found in DNA extracted from uncultivated bacteria living in the ocean that are presumably species of cyanobacteria.

<span class="mw-page-title-main">Ammonia transporter</span>

Ammonia transporters are structurally related membrane transport proteins called Amt proteins in bacteria and plants, methylammonium/ammonium permeases (MEPs) in yeast, or Rhesus (Rh) proteins in chordates. In humans, the RhAG, RhBG, and RhCG Rhesus proteins constitute solute carrier family 42 whilst RhD and RhCE form the Rh blood group system. The three-dimensional structure of the ammonia transport protein AmtB from Escherichia coli has been determined by x-ray crystallography revealing a hydrophobic ammonia channel. The human RhCG ammonia transporter was found to have a similar ammonia-conducting channel structure. It was proposed that the erythrocyte Rh complex is a heterotrimer of RhAG, RhD, and RhCE subunits in which RhD and RhCE might play roles in anchoring the ammonia-conducting RhAG subunit to the cytoskeleton. Based on reconstitution experiments, purified RhCG subunits alone can function to transport ammonia. RhCG is required for normal acid excretion by the mouse kidney and epididymis.

<span class="mw-page-title-main">Nif regulon</span>

The Nif regulon is a set of seven operons used to regulate nitrogen fixation in the coliform bacterium Klebsiella pneumoniae under anaerobic and microaerophilic conditions. It includes 17 nif genes, and is situated between the his and the Shi-A operon of the bacterium.

<span class="mw-page-title-main">Pii nitrogen regulatory proteins</span>

The PII family comprises a group of widely distributed signal transduction proteins found in nearly all Bacteria and also present in Archaea and in the chloroplasts of Algae and plants. PII form barrel-like homotrimers with a flexible loop, namely T-loop, emerging from each subunit. PII proteins have extraordinary sensory properties; they can exist in a vast range of structural status accordingly to the levels of ATP, ADP and 2-oxogluratate. These metabolites interact allosterically with PII in three conserved binding sites located in the lateral cavity between each PII subunit. ATP and ADP bind competitively to the nucleotide binding whereas the 2-oxoglutarate only interacts with PII in the presence of MgATP.

The gua operon is responsible for regulating the synthesis of guanosine mono phosphate (GMP), a purine nucleotide, from inosine monophosphate. It consists of two structural genes guaB (encodes for IMP dehydrogenase or and guaA apart from the promoter and operator region.

<i>gab</i> operon

The gab operon is responsible for the conversion of γ-aminobutyrate (GABA) to succinate. The gab operon comprises three structural genes – gabD, gabT and gabP – that encode for a succinate semialdehyde dehydrogenase, GABA transaminase and a GABA permease respectively. There is a regulatory gene csiR, downstream of the operon, that codes for a putative transcriptional repressor and is activated when nitrogen is limiting.

The gene rpoN encodes the sigma factor sigma-54, a protein in Escherichia coli and other species of bacteria. RpoN antagonizes RpoS sigma factors.

The locus of enterocyte effacement-encoded regulator (Ler) is a regulatory protein that controls bacterial pathogenicity of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC). More specifically, Ler regulates the locus of enterocyte effacement (LEE) pathogenicity island genes, which are responsible for creating intestinal attachment and effacing lesions and subsequent diarrhea: LEE1, LEE2, and LEE3. LEE1, 2, and 3 carry the information necessary for a type III secretion system. The transcript encoding the Ler protein is the open reading frame 1 on the LEE1 operon.

References

  1. Miranda-Rfos, Juan; Ray Sanchez-Pescador; Mickey Urdea; Alejandro A.Covarrubias (March 25, 1987). "The complete nudeotide sequence of the gfnALG operon of Escherichia coU K12|". Nucleic Acids Research. 15 (6): 2757–2770. doi:10.1093/nar/15.6.2757. PMC   340682 . PMID   2882477.
  2. Ueno-Nishio, Shizue; Keith C. Backman; Boris Magasanik (March 1983). "Regulation at the glnL-Operator-Promoter of the Complex glnALG Operon of Escherichia coli". Journal of Bacteriology. 153 (3): 1247–1251. doi:10.1128/jb.153.3.1247-1251.1983. PMC   221769 . PMID   6131062.
  3. Merrick, MJ; Edwards, RA (1995). "Nitrogen control in bacteria". Microbiol Rev. 59 (4): 604–22. doi:10.1128/mr.59.4.604-622.1995. PMC   239390 . PMID   8531888.
  4. Jayakumar, A; I Schulman, D MacNeil; E M Barnes Jr (April 1986). "Role of the Escherichia coli glnALG operon in regulation of ammonium transport". Journal of Bacteriology. 166 (1): 281–284. doi:10.1128/jb.166.1.281-284.1986. PMC   214588 . PMID   2870054.
  5. Bueno, R; G Pahel; B Magasanik (November 1985). "Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli". Journal of Bacteriology. 164 (2): 816–822. doi:10.1128/jb.164.2.816-822.1985. PMC   214324 . PMID   2865248.