Glysobuzole

Last updated
Glysobuzole
Glysobuzole.svg
Names
Preferred IUPAC name
4-Methoxy-N-[5-(2-methylpropyl)-1,3,4-thiadiazol-2-yl]benzene-1-sulfonamide
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C13H17N3O3S2/c1-9(2)8-12-14-15-13(20-12)16-21(17,18)11-6-4-10(19-3)5-7-11/h4-7,9H,8H2,1-3H3,(H,15,16)
    Key: LZCBNYVJTNCPDR-UHFFFAOYSA-N
  • CC(C)CC1=NN=C(NS(=O)(=O)C2=CC=C(C=C2)OC)S1
Properties
C13H17N3O3S2
Molar mass 327.4 g/mol
Density 1.338 g/cm3
Boiling point 486.5 °C at 760 mmHg
Hazards
Flash point 248 °C (478 °F; 521 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glysobuzole (or isobuzole) is an oral antidiabetic drug, it is taken once daily by oral administration and it is water soluble to become pharmaceutically active within the gastrointestinal tract. It is a sulfonamide derivative that is similar to sulfonylureas. Glysobuzole has antihyperglycemic activity, so it is able to lower blood glucose levels by increasing the release of insulin from the pancreatic beta cells. Glysobuzole functions as a modulator in metabolic processes involving insulin and therefore it is used to treat diabetes. [1]

Contents

Structure and reactivity

The molecular formula of glysobuzole is C13H17N3O3S2. It is synonymously found under the name isobuzole. Its systematic name is 4-methoxy-N-[5-(2-methylpropyl)-1,3,4-thiadiazol-2-yl]benzenesulfonamide. Its achiral structure includes a benzene ring connected to a thiadiazole via a sulfonamide. The thiadiazole is bound to an iso-butyl group. The molecular weight is 327.427 Dalton.

Synthesis

The general pathway of synthesizing sulfonamides is through a substitution reaction involving an amine and a sulfonyl chloride. Alternatively, this can be done with sulfonate esters and ammonia. However, no literature can be found on such an alternative pathway for the synthesis of glysobuzole. [2] The synthesis of glysobuzole involves three reagents: p-anisylsulfonyl chloride, thiosemicarbazide and isovaleric acid. [3]

Structure of isovaleric acid Isovaleric acid structure.png
Structure of isovaleric acid
Structure of thiosemicarbazide Thiosemicarbazide.png
Structure of thiosemicarbazide

Thiosemicarbazide will form the five-membered ring in the structure. Before the cyclization of thiosemicarbazide, it will first undergo acylation to form a monothiodiacylhydrazine. This happens under the influence of a carboxylic acid such as isovaleric acid. The acid will donate an acyl group to the thiosemicarbazide. The intermediate compound cyclizes under the influence of an acid catalyst.

A compound very similar to glysobuzole is glybuzole. The two compounds both contain a hypoglycemic part, which are structurally identical. The synthesis pathway of glysobuzole is very similar to the synthesis pathway of glybuzole. For both compounds, the reaction is a bimolecular substitution reaction (SN2). When synthesizing glybuzole, pyridine is added as an oxidation step at the end of the reaction. [4] The intermediate compound will have a positive charge. Pyridine takes up the oxygen to remove the positive charge present on the nitrogen atom.

Mechanism of action

Due to the hypoglycemic activity of glysobuzole it is used to treat type 2 diabetes by raising the plasma insulin levels and, effectively, lowering the blood glucose levels. Glysobuzole binds to sulfonylurea-specific receptors on pancreatic β-cells and blocks the ATP-dependent channels for potassium. The inflow of K+ ions stops and the cell membrane depolarizes, resulting in the diffusion of calcium into the cell. The actomyosin filaments of β-cells contract and release insulin. Secretion of insulin in large amounts decreases the concentration of glucose in blood. [5]

Metabolism

After oral intake, glysobuzole is absorbed in the intestine. Metabolism takes time to come into effect, therefore the drug should be ingested 30 minutes before a meal. It binds to plasma proteins and induce their biological effect on the body. [5] Afterwards, they undergo N-acetylation and oxidation, and are exerted from the body through the urinary tract.

Efficacy

Apart from their hypoglycemic activity, sulfonamides, including glysobuzole, show bacterial resistance. They are competitive inhibitors of folic acid synthesis preventing the reproduction and growth of microbes, making them bacteriostatic agents. Therefore, they are the first successful antibacterial drugs used in infections. [6]

Adverse effects

If glycemic control has not been reached after 2 weeks, the dosage should be increased, this can be done until control is reached. However, there is the danger of excessive dosages, as a result, this can lead to hypoglycemia caused by abnormal insulin production. Insulin induction by glysobuzole is independent of the glucose levels which only increases the risk of lowering the blood sugar below normal. Moreover, it can lead to weight gain, nausea, skin irritation and, very rarely, photosensitivity. [5] Some patients become susceptible to urinary tract infections, after one incident the likelihood of another increases, therefore it can further lead to a urinary tract disorder. This is caused by metabolite precipitation due to acetylated sulfonamides in the urinary tract. [7]

Toxicity

The six membered benzene ring causes skin sensitization. [8] The sulfonyl nitrate part of the compound causes ocular toxicity. [9]

Acute toxicity data - lethal dose

type of test [10] speciesroute of exposuredosetoxic effects
LD50 rodent - ratoral534 mg/kgdetails of toxic effects not reported other than lethal dose value
LD50rodent - mouseoral468 mg/kgdetails of toxic effects not reported other than lethal dose value
LD50rodent - mouseintraperitoneal250 mg/kgbehavioral - ataxia; endocrine - hypoglycemia; nutritional and gross metabolic - body temperature decrease
LDmammal - dogoral>1 gm/kgbehavioral - tremor, muscle weakness; gastrointestinal - nausea or vomiting

Tumorigenic data

type of testspeciesroute or exposuredosetoxic effects
TDLo - Lowest published toxic doserodent - ratoral214 gm/kg/52W-Ctumorigenic - equivocal tumorigenic agent by RTECS criteria; kidney, ureter,  bladder - tumors [11]

Related Research Articles

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Hypoglycemia</span> Health condition

Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose below 70 mg/dL (3.9 mmol/L), symptoms associated with hypoglycemia, and resolution of symptoms when blood sugar returns to normal. Hypoglycemia may result in headache, tiredness, clumsiness, trouble talking, confusion, fast heart rate, sweating, shakiness, nervousness, hunger, loss of consciousness, seizures, or death. Symptoms typically come on quickly.

The following is a glossary of diabetes which explains terms connected with diabetes.

<span class="mw-page-title-main">Beta cell</span> Type of cell found in pancreatic islets

Beta cells (β-cells) are specialized endocrine cells located within the pancreatic islets of Langerhans responsible for the production and release of insulin and amylin. Constituting ~50–70% of cells in human islets, beta cells play a vital role in maintaining blood glucose levels. Problems with beta cells can lead to disorders such as diabetes.

<span class="mw-page-title-main">Glimepiride</span> Medication

Glimepiride is an antidiabetic medication within the sulfonylurea class, primarily prescribed for the management of type 2 diabetes. It is regarded as a second-line option compared to metformin, due to metformin's well-established safety and efficacy. Use of glimepiride is recommended in conjunction with lifestyle modifications such as diet and exercise. It is taken by mouth, reaching a peak effect within three hours and lasting for about a day.

Drugs used in diabetes treat diabetes mellitus by decreasing the glucose level in the blood. With the exception of insulin, most GLP receptor agonists, and pramlintide, all are administered orally and are thus also called oral hypoglycemic agents or oral antihyperglycemic agents. There are different classes of hypoglycemic drugs, and their selection depends on the nature of diabetes, age, and situation of the person, as well as other factors.

4-Aminobenzoic acid (also known as para-aminobenzoic acid or PABA because the two functional groups are attached to the benzene ring across from one another in the para position) is an organic compound with the formula H2NC6H4CO2H. PABA is a white solid, although commercial samples can appear gray. It is slightly soluble in water. It consists of a benzene ring substituted with amino and carboxyl groups. The compound occurs extensively in the natural world.

<span class="mw-page-title-main">Sulfonamide (medicine)</span> Molecular moiety or the drug class that uses it

Sulfonamide is a functional group that is the basis of several groups of drugs, which are called sulphonamides, sulfa drugs or sulpha drugs. The original antibacterial sulfonamides are synthetic (nonantibiotic) antimicrobial agents that contain the sulfonamide group. Some sulfonamides are also devoid of antibacterial activity, e.g., the anticonvulsant sultiame. The sulfonylureas and thiazide diuretics are newer drug groups based upon the antibacterial sulfonamides.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

<span class="mw-page-title-main">Sulfonylurea</span> Class of organic compounds used in medicine and agriculture

Sulfonylureas or sulphonylureas are a class of organic compounds used in medicine and agriculture. The functional group consists of a sulfonyl group (-S(=O)2) with its sulphur atom bonded to a nitrogen atom of a ureylene group (N,N-dehydrourea, a dehydrogenated derivative of urea). The side chains R1 and R2 distinguish various sulfonylureas. Sulfonylureas are the most widely used herbicide.

Hyperinsulinemic hypoglycemia describes the condition and effects of low blood glucose caused by excessive insulin. Hypoglycemia due to excess insulin is the most common type of serious hypoglycemia. It can be due to endogenous or injected insulin.

<span class="mw-page-title-main">Sulfamethoxazole</span> Chemical compound

Sulfamethoxazole is an antibiotic. It is used for bacterial infections such as urinary tract infections, bronchitis, and prostatitis and is effective against both gram negative and positive bacteria such as Escherichia coli and Listeria monocytogenes.

In biochemistry, dephosphorylation is the removal of a phosphate (PO43−) group from an organic compound by hydrolysis. It is a reversible post-translational modification. Dephosphorylation and its counterpart, phosphorylation, activate and deactivate enzymes by detaching or attaching phosphoric esters and anhydrides. A notable occurrence of dephosphorylation is the conversion of ATP to ADP and inorganic phosphate.

<span class="mw-page-title-main">Tolbutamide</span> Chemical compound

Tolbutamide is a first-generation potassium channel blocker, sulfonylurea oral hypoglycemic medication. This drug may be used in the management of type 2 diabetes if diet alone is not effective. Tolbutamide stimulates the secretion of insulin by the pancreas.

<span class="mw-page-title-main">Biguanide</span> Chemical compound

Biguanide is the organic compound with the formula HN(C(NH)NH2)2. It is a colorless solid that dissolves in water to give highly basic solution. These solutions slowly hydrolyse to ammonia and urea.

<span class="mw-page-title-main">Gliclazide</span> Chemical compound

Gliclazide, sold under the brand name Diamicron among others, is a sulfonylurea type of anti-diabetic medication, used to treat type 2 diabetes. It is used when dietary changes, exercise, and weight loss are not enough. It is taken by mouth.

<span class="mw-page-title-main">Dihydropteroate synthase inhibitor</span> A drug that inhibits the action of dihydropteroate synthase

Dihydropteroate synthase inhibitors are drugs that inhibit the action of dihydropteroate synthase. They include sulfonamides, dapsone, and para-aminosalicylic acid.

The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones.

<span class="mw-page-title-main">Sulfonamide</span> Organosulfur compounds containing –S(=O)2–N< functional group

In organic chemistry, the sulfonamide functional group is an organosulfur group with the structure R−S(=O)2−NR2. It consists of a sulfonyl group connected to an amine group. Relatively speaking this group is unreactive. Because of the rigidity of the functional group, sulfonamides are typically crystalline; for this reason, the formation of a sulfonamide is a classic method to convert an amine into a crystalline derivative which can be identified by its melting point. Many important drugs contain the sulfonamide group.

<span class="mw-page-title-main">Glybuzole</span> Chemical compound

Glybuzole is a hypoglycaemic medicine, mainly used to treat diabetes mellitus type 2. It is an oral antidiabetic drug (OAD), when administered in the right dose it will help bring the blood glycose level down by stimulating the insulin production. Similar medicines are glimepiride, glipizide, glibenclamide, gliclazide, and gliquidone.

References

  1. "Glysobuzole". pubchem.ncbi.nlm.nih.gov.
  2. Smith, Michael, October 17- (2016). Organic chemistry : an acid-base approach (Second ed.). Boca Raton, FL. ISBN   978-1-4822-3826-6. OCLC   1030993177.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  3. Molbase Glysobuzole
  4. "Thieme Pharmaceutical Substances". pharmaceutical-substances.thieme.com. Retrieved 2021-06-05.
  5. 1 2 3 Sola, Daniele; Rossi, Luca; Schianca, Gian Piero Carnevale; Maffioli, Pamela; Bigliocca, Marcello; Mella, Roberto; Corlianò, Francesca; Fra, Gian Paolo; Bartoli, Ettore; Derosa, Giuseppe (2015). "State of the art paper Sulfonylureas and their use in clinical practice". Archives of Medical Science. 4 (4): 840–848. doi:10.5114/aoms.2015.53304. ISSN   1734-1922. PMC   4548036 . PMID   26322096.
  6. Tacic, Ana; Nikolic, Vesna; Nikolic, Ljubisa; Savic, Ivan (2017). "Antimicrobial sulfonamide drugs". Adv Techn Advanced Technologies. 6 (1): 58–71. doi: 10.5937/savteh1701058T . ISSN   2406-2979. OCLC   7080287268.
  7. Tacic, Ana; Nikolic, Vesna; Nikolic, Ljubisa; Savic, Ivan (2017). "Antimicrobial sulfonamide drugs". Adv Techn Advanced Technologies. 6 (1): 58–71. doi: 10.5937/savteh1701058T . ISSN   2406-2979. OCLC   7080287268.
  8. Cronin, M. T. D.; Basketter, D. A. (September 1994). "Multivariate Qsar Analysis of a Skin Sensitization Database". SAR and QSAR in Environmental Research. 2 (3): 159–179. doi:10.1080/10629369408029901. ISSN   1062-936X. PMID   8790644.
  9. Tilden, Morris E. (1991-01-01). "Systemic Sulfonamides as a Cause of Bilateral, Anterior Uveitis". Archives of Ophthalmology. 109 (1): 67–69. doi:10.1001/archopht.1991.01080010069035. ISSN   0003-9950. PMID   1987952.
  10. "3567-08-6". www.chemsrc.com.
  11. "3567-08-6". www.chemsrc.com.