Grain drying

Last updated

Grain drying is process of drying grain to prevent spoilage during storage. The grain drying described in this article is that which uses fuel- or electric-powered processes supplementary to natural ones, including swathing/windrowing for drying by ambient air and sunshine, or stooking before threshing. [1]

Contents

Overview

Hundreds of millions of tonnes of wheat, corn, soybean, rice and other grains as sorghum, sunflower seeds, rapeseed/canola, barley, oats, etc., are dried in grain dryers. [2] In the main agricultural countries, drying comprises the reduction of moisture from about 17-30% w/w[ clarification needed ] to values between 8 and 15%w/w, depending on the grain. The final moisture content for drying must be adequate for storage. The more oil the grain has, the lower its storage moisture content will be (though its initial moisture for drying will also be lower). Cereals are often dried to 14% w/w, while oilseeds, to 12.5% (soybeans), 8% (sunflower) and 9% (peanuts). Drying is carried out as a requisite for safe storage, in order to inhibit microbial growth. However, low temperatures in storage are also highly recommended to avoid degradative reactions and, especially, the growth of insects and mites. A good maximum storage temperature is about 18 °C.

The largest dryers are normally used "Off-farm", in elevators, and are of the continuous type: Mixed-flow dryers are preferred in Europe, while Cross-flow dryers in the United States. In Argentina, both types are commonly found. Continuous flow dryers may produce up to 100 metric tonnes of dried grain per hour. The depth of grain the air must traverse in continuous dryers range from some 0.15 m in Mixed flow dryers to some 0.30 m in Cross-Flow. Batch dryers are mainly used "On-Farm", particularly in the United States and Europe. They normally consist of a bin, with heated air flowing horizontally from an internal cylinder through an inner perforated metal sheet, then through an annular grain bed, some 0.50 m thick (coaxial with the internal cylinder) in radial direction, and finally across the outer perforated metal sheet, before being discharged to the atmosphere. The usual drying times range from 1 h to 4 h depending on how much water must be removed, type of grain, air temperature and the grain depth. In the United States, continuous counterflow dryers may be found on-farm, adapting a bin to slowly drying grain fed at the top and removed at the bottom of the bin by a sweeping auger.

Grain drying is an active area of research. The performance of a dryer can be simulated with computer programs based on mathematical models that represent the phenomena involved in drying: physics, physical chemistry, thermodynamics, and heat and mass transfer. Most recently computer models have been used to predict product quality by achieving a compromise between drying rate, energy consumption, and grain quality. A typical quality parameter in wheat drying is breadmaking quality and germination percentage whose reductions in drying are somewhat related.

Grain Drying fundamentals

Drying starts at the bottom of the bin, which is the first place air contacts. The dry air is brought up by the fan through a layer of wet grain. Drying happens in a layer of 1 to 2 feet thick, which is called the drying zone. The drying zone moves from the bottom of the bin to the top, and when it reaches the highest layer, the grain is dry. The grain below drying zone is in equilibrium moisture content with drying air, which means it is safe for storage; while the grain above still needs drying. The air is then forced out the bin through exhaust vent.

Allowable Storage Time

Allowable storage time is an estimate of how long the grain needs to be dried before spoilage and maintain grain quality during storage. In grain storage process, fungi or molds are the primary concern. Many other factors, such as insects, rodents, and bacteria, also affect the condition of storage. The lower the grain temperature is, the longer the allowable storage time will be. [3]

Proper moisture levels for safe storage

It is possible for long period safe storage if grain moisture content is less than 14%, and stored away from insects, rodents and birds. The following figure is the recommended moisture content for safe storage. [4]

Storage durationRequired MC for safe storagePotential problems
Weeks to a few months storage14% or lessMolds, discoloration, respiration loss, insect damage, moisture adsorption
Storage for 8 to 12 months13% or lessInsect damage
Storage of farmer's seeds12% or lessLoss of germination
Storage for more than 1 year9% or lessLoss of germination

Equilibrium Moisture Content

Moisture content in grain is related to the relative humidity and the temperature of the surrounding air. Equilibrium moisture content point is the point when grain no longer losing or gaining water when contacting with drying air. The final moisture content of the grain is up to the amount of moisture in the drying air, which is the relative humidity. The low relative humidity means air is dry and it has a large potential of picking up water. The lower the relative humidity is, the drier the air is. In general, one-half reduce in relative humidity is caused by 20° degree increase in air temperature. [5]

Temperature

Heated air may be used in grain drying process. It can not only accelerate moisture migration inside the kernel, but also can evaporate the moisture on the surface. The major problem about heated air for drying process is the kernel temperature. The grain kernel may be damaged by high kernel temperatures. Usually, kernel temperature is lower than the air temperature. For different use of the corn, temperatures vary. For example, for seed corn, the maximum temperature is 110 °F; for livestock feeding corn, the maximum temperature is 180 °F.

Aeration

Aeration process refers to the process of moving air through grain. Airflow is a measurement of the amount of air in cubic feet per minute (CFM). In grain drying process, drying time is largely depended on aeration rates. Without sufficient airflow, grain may be damaged before drying is complete. Fans are used to move air through grain. [6]

ApplicationGrain aeration rate (cfm/bu)
Quality maintenance1/50 to 1
Natural-air bin drying1 to 3
Heated-air bin drying2 to 12
Batch or continuous-flow column dryers50 to 150
Fluidization~400

Drying cost

The drying cost is made up of two parts: the capital cost and the operating cost. Capital cost is largely depend on the drying rate requirement, and equipment cost. Operating cost refers to fuel, electricity and labor force cost. The amount of energy required to dry a bushel of grain is similar for all the drying methods. Some methods depend largely on natural air, while others may use LP heat or natural gas, which make energy cost vary. Basically, fuel and electrical power are the major portions of the operating cost. [7] Drying cost is based on the B.T.U. consumption of temperature change from environment to desired one.

Classification of grain drying methods according to mode of heat transfer

[8]

In-storage drying methods
  1. Low-temperature drying
  2. Multiple-layer drying
Batch drying methods
  1. Bin batch drying
  2. Column batch drying
Continuous flow drying methods
  1. Cross flow drying
  2. Counter flow drying
  3. Concurrent flow drying

In-storage drying methods

Low-temperature Drying

In-storage drying methods refers to those grain is dried and stored in the same container. Low-temperature drying, also known as near-ambient drying, is one of in-storage drying methods. There are four major factors which influence low temperature drying: the variability of weather, the harvest moisture content, the air flow in the storage bin and the amount of heated air. [9] Most low-temperature dryers are built to dry grain as slowly as possible, while in the same time less spoilage on the grain. It is suggested that low temperature drying system is better operated when the average daily temperature is between 30 °C and 50 °C. Rather than control the drying air temperature, the low-temperature drying focuses on the relative humidity in order to achieve equilibrium moisture content (EMC) in all grain layers. [10] Low-temperature drying process usually takes 5 days to several months depends on several important variables: weather, airflow, initial moisture content and amount of heat used. Among which, airflow is the key factor. Without appropriate airflow rate, spoilage will occur before drying is completed. By using heated air (LP heat, electric heat and solar heat), the relative humidity of the drying air is better controlled to achieve the desired moisture content. Usually, heated air dryer is used when the relative humidity larger than 70%. In electric heat dryers, an electrical resistant heater is usually placed before the fan to heat the airstream. In some case, a humidistat is employed to control the heater. In solar heat dryers, the drying air passes through the solar collector first to be heated (usually 10 to 12 °F rise), then enters the bin through the fan and motor. The advantages of in-storage low temperature drying are quick filling, high quality product, less equipment requirement; while the disadvantages are long drying time, electrical demand if using electric heat, high management skills and uncertain harvest moisture content.

Multiple-layer Drying

Multiple layer drying method refers to the use of LP heat or natural gas in drying corn. Compared to low-temperature methods, multiple-layer drying requires higher temperatures, which results in a shorter allowable storage time. Multiple-layer drying without stirring is the basic multiple-layer drying method, in which airstream is entered through an LP heater by a fan. Usually, the temperature rise after the LP burner is remained low in order to avoid over drying in the bottom layers in the bin. As soon as corn is dried in the bin, the burner is turned off and the fan is used to bring the corn to ambient temperature. The advantages of multiple-layer drying without stirring are little handling of corn, and bin can be used as either dryer or storage; the disadvantages are slow filling and over drying in the bottom layers (Bern and Brumm, 2010). Multiple-layer drying with stirring can not only dry grain equilibrium from top to bottom, but also decrease the air resistance of the grain. Moreover, using stirring system can avoid over drying in bottom layer problem and give a uniform grain moisture content in the whole bin. When drying is complete, the burner is turned off while the fan and stirrer are used to mix the corn to achieve equal moisture content and temperature. The advantages of adding stirring are preventing over drying and accelerating drying and allowable fill rate; the disadvantages of stirring system are additional expenses and decreasing bin capacity.

Batch drying methods

Bin-Batch Drying

In batch drying methods, certain amount of grain is placed first, usually 2 to 4 inches, the batch is dried and cooled later, then drying is stopped and batch is removed. The batch dryers are usually operating under this sequence and repeating this sequence for several times. The bin-batch drying methods employ a full perforated floor as the dryer. Without stirring, large variety of equipment is available and the batch can be used as both dryer and cooler, but there may be large moisture gradient from top to bottom and losing time in loading and unloading process. When adding stirring system, unequilibrium[ spelling? ] moisture content problem is avoided, however, stirrer is an added expense. When using bin-batch roof dryer, time losing problem can be solved. There is a drying floor under the bin roof and the drying fan and burner is installed high on the bin wall. When the drying process is completed, grain is put in the regular bin floor, thus unloading time is reduced. However, there is no wet grain holding in bin-batch roof dryers and there is more expense on machines.

Column Batch Drying

The column formed in this kind of dryer is made up of two vertical perforated steel sheets, which is about 12 inches thick each. The capacity of column batch dryers is too small to store grains. The advantages of column batch, stationary bed dryer are easy to move and the dyer can be used as cooler; while the disadvantages are time losing when cooling, loading and unloading and unequal moisture distribution when drying is completed. When column batch recirculating dryer is used, the moisture content variation problem is avoided, but the additional handling process may result in grain spoilage.

Continuous flow drying methods

Cross Flow Drying

Cross flow dryers is one of the most widely used continuous flow dryers. In the cross flow dryer, the airstream is perpendicular to the grain flow. Then the grain near the drying air is over dried, while on the other side, grain is under dried. Moisture gradient exists when drying is complete. In reality, the lower the airflow rate, the higher the grain moisture content variation between two sides of the column. [11]

Concurrent Flow Drying

In the concurrent flow dryer, both the grain and air are moving in the same direction, which means the wettest grain is subjected to the hottest drying air. The kernels leave the drying region at the same temperature and the same moisture content. Energy efficiency is 40% better compared to cross flow dryer. However, the bed depth must be deeper than 12 inches depth than cross flow type. Thus, fan power requirements are high in this type of dryer.

Counter Flow Drying

In the counter flow dryer, the grain and the air are moving in opposite directions, which mean the driest grain is subjected to the hottest drying air. The kernels leave the drying region at the same temperature and the same moisture as in concurrent flow dryers. The suggesting air temperatures are less than 180 °F because the driest kernels are more likely to be damaged by hot air.

Drying of specific crops

Sunflower drying

For different types of sunflowers, the preservation moisture content is different. Oilseed sunflowers are better dried to 9 percent moisture content, while bird seed sunflowers are 10 percent moisture content. Compared to corn drying, sunflowers are more easily dried and kept in safe storage. What's more, high temperature may not have adverse effect on sunflowers kernel, which may be the reason of the fatty acid composition. There was no evidence of damage when air was heated up to 220 °F in drying. However, fine hairs and fibers on the seed coat of sunflowers may cause fire hazard. It is suggested that remove the flaming particles first when heating the sunflowers.

Bean drying

The seed coat of bean is quite fragile and easy to damaged in cracking and splitting, which may cause loss to the producer. Some studies on beans suggested that in order to avoid cracking, it is better to keep drying air above 40 percent relative humidity. [12]

Corn drying

When drying corn kernels it is important to keep in mind that cracks and fractures in the corn can lead to many problems in both the storage and processing. The major problem that occurs from high temperature drying and then rapid cooling of the grain is stress-cracking. Stress-cracking is when fractures become present in the corn endosperm. Stress-cracked kernels often absorb water too quickly, are more likely to become broken, and are increasingly susceptible to insect and mold damage during dry storage. In order to reduce the amount of grain that is lost due to stress-cracking, medium temperature and slow cooling, or natural air and low temperature drying methods should be employed. [13]

History

The era in which millions of tons of grain are dried by fuel-powered or electric-powered dryers at industrial scale as a routine matter of course did not begin until the postwar era after World War II. Its advent was necessary for the advent of ubiquitous combine harvesting in all regions, even humid ones and higher-latitude cooler ones, as combining involves no time interval between reaping and threshing, unlike traditional harvesting of cereal grains, which involved shocking (stooking) the grain and allowing it to air dry for weeks in an intermediate step before threshing. As recently as the 1930s, when Cyrus McCormick III wrote his seminal history of the mechanization of grain harvesting (The Century of the Reaper), the mechanical prowess of combine design had already become substantially advanced, but the moisture of the grain still represented a great barrier to extending combining to ubiquity. The general sweep of advancement of mechanized bulk materials handling that occurred in the mid-20th century was of a piece with these other interrelated aspects of novel systems, including greatly advanced trucking, power farming equipment, roadbuilding, electrification, distribution infrastructure for LPG and fuel oil, and so on. All of these factors acting in concert were necessary to make possible the era in which humans produce grain in affordable abundance with extensive mechanization and very little labor per ton.

Related Research Articles

<span class="mw-page-title-main">Kiln</span> Oven that generates high temperatures

A kiln is a thermally insulated chamber, a type of oven, that produces temperatures sufficient to complete some process, such as hardening, drying, or chemical changes. Kilns have been used for millennia to turn objects made from clay into pottery, tiles and bricks. Various industries use rotary kilns for pyroprocessing and to transform many other materials.

<span class="mw-page-title-main">Popcorn</span> Type of corn kernel which expands and puffs up on heating

Popcorn is a variety of corn kernel which expands and puffs up when heated; the same names also refer to the foodstuff produced by the expansion.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

<span class="mw-page-title-main">Hygrometer</span> Instrument for measuring humidity

A hygrometer is an instrument which measures the humidity of air or some other gas: that is, how much water vapor it contains. Humidity measurement instruments usually rely on measurements of some other quantities such as temperature, pressure, mass and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use the temperature of condensation, or they sense changes in electrical capacitance or resistance to measure humidity differences. A crude hygrometer was invented by Leonardo da Vinci in 1480. Major leaps came forward during the 1600s; Francesco Folli invented a more practical version of the device, while Robert Hooke improved a number of meteorological devices including the hygrometer. A more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later, in the year 1783, Swiss physicist and Geologist Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

<span class="mw-page-title-main">Clothes dryer</span> Appliance used for drying wet clothes

A clothes dryer, also known as tumble dryer or simply dryer, is a powered household appliance that is used to remove moisture from a load of clothing, bedding and other textiles, usually after they are washed in a washing machine.

<span class="mw-page-title-main">Dried fruit</span> Fruit from which the majority of the original water content has been removed

Dried fruit is fruit from which the majority of the original water content has been removed either naturally, through sun drying, or through the use of specialized dryers or dehydrators. Dried fruit has a long tradition of use dating back to the fourth millennium BC in Mesopotamia, and is prized because of its sweet taste, nutritive value, and long shelf life.

<span class="mw-page-title-main">Psychrometrics</span> Study of gas-vapor mixtures

Psychrometrics is the field of engineering concerned with the physical and thermodynamic properties of gas-vapor mixtures.

<span class="mw-page-title-main">Modified atmosphere</span>

Modified atmosphere packaging (MAP) is the practice of modifying the composition of the internal atmosphere of a package in order to improve the shelf life. The need for this technology for food arises from the short shelf life of food products such as meat, fish, poultry, and dairy in the presence of oxygen. In food, oxygen is readily available for lipid oxidation reactions. Oxygen also helps maintain high respiration rates of fresh produce, which contribute to shortened shelf life. From a microbiological aspect, oxygen encourages the growth of aerobic spoilage microorganisms. Therefore, the reduction of oxygen and its replacement with other gases can reduce or delay oxidation reactions and microbiological spoilage. Oxygen scavengers may also be used to reduce browning due to lipid oxidation by halting the auto-oxidative chemical process. Besides, MAP changes the gaseous atmosphere by incorporating different compositions of gases.

<span class="mw-page-title-main">Drying</span> Removal of water or another solvent by evaporation from a solid, semi-solid or liquid

Drying is a mass transfer process consisting of the removal of water or another solvent by evaporation from a solid, semi-solid or liquid. This process is often used as a final production step before selling or packaging products. To be considered "dried", the final product must be solid, in the form of a continuous sheet, long pieces, particles or powder. A source of heat and an agent to remove the vapor produced by the process are often involved. In bioproducts like food, grains, and pharmaceuticals like vaccines, the solvent to be removed is almost invariably water. Desiccation may be synonymous with drying or considered an extreme form of drying.

<span class="mw-page-title-main">Pot-in-pot refrigerator</span> Non-electric method of refrigeration

A pot-in-pot refrigerator, clay pot cooler or zeer is an evaporative cooling refrigeration device which does not use electricity. It uses a porous outer clay pot containing an inner pot within which the food is placed. The evaporation of the outer liquid draws heat from the inner pot. The device can cool any substance, and requires only a flow of relatively dry air and a source of water.

<span class="mw-page-title-main">Wood drying</span> Also known as seasoning, which is the reduction of the moisture content of wood prior to its use

Wood drying reduces the moisture content of wood before its use. When the drying is done in a kiln, the product is known as kiln-dried timber or lumber, whereas air drying is the more traditional method.

For environmental remediation, Low-temperature thermal desorption (LTTD), also known as low-temperature thermal volatilization, thermal stripping, and soil roasting, is an ex-situ remedial technology that uses heat to physically separate petroleum hydrocarbons from excavated soils. Thermal desorbers are designed to heat soils to temperatures sufficient to cause constituents to volatilize and desorb from the soil. Although they are not designed to decompose organic constituents, thermal desorbers can, depending upon the specific organics present and the temperature of the desorber system, cause some organic constituents to completely or partially decompose. The vaporized hydrocarbons are generally treated in a secondary treatment unit prior to discharge to the atmosphere. Afterburners and oxidizers destroy the organic constituents. Condensers and carbon adsorption units trap organic compounds for subsequent treatment or disposal.

<span class="mw-page-title-main">Grain bin</span>

Grain bins are bulk storage structures for dry corn, soybean, wheat, oats, barley and more. Grain bins are cylinders made of corrugated sheets or sheet metal with a coned metal roof that has vents. The floors of grain bins have aeration systems to keep good air flow through the commodities and keep it at a good temperature and humidity level to prevent spoilage. At the top of each grain bin there are tubed conveyors to transport the grain. The grain bin sits on top of a strong concrete base to help the structure withstand high winds and the massive weight from the grain.

<span class="mw-page-title-main">Food dehydrator</span> Home food preservation

A food dehydrator is a device that removes moisture from food to aid in its preservation. Food drying is a method of preserving fruit, vegetables and meats that has been practiced since antiquity.

<span class="mw-page-title-main">Malting</span> Process of steeping, germinating and drying grain to convert it into malt

Malting is the process of steeping, germinating and drying grain to convert it into malt. Germination and sprouting involve a number of enzymes to produce the changes from seed to seedling and the malt producer stops this stage of the process when the required enzymes are optimal. Among other things, the enzymes convert starch to sugars such as maltose, maltotriose and maltodextrines, hence the name malt.

Grain damage is any degradation in the quality of grain. In the current grain trade, this damage can affect price, feed quality, food product quality, and susceptibility to pest contamination. Between the field and the end use, grain may go through any number of handling operations which can each contribute to grain damage. For example, grain might encounter free fall, conveyors, spouts, grain throwers, elevators, hoppers, dryers, and many more. Overall, these handling methods can be evaluated as to what effect they have on the grain. Damaged grain can often be characterized by the extent to which it reduces storage time. For example, cracked or broken kernels are more susceptible to insect or bacteria as well as chemical degradation. The damage to the actual grain is only one example of losses incurred after harvest. In order to quantify grain damage, one must also understand grain quality. Grain quality is a very broad term and can relate to many topics such as foreign material, chemical compositions, mechanical damage, insect infestations, and many more. These references to quality are highly dependent on the end use of the grain. Certain types of damage may be acceptable to specific industries, whereas others cannot use grain with these issues.

In agriculture, grain quality depends on the use of the grain. In ethanol production, the chemical composition of grain such as starch content is important, in food and feed manufacturing, properties such as protein, oil and sugar are significant, in the milling industry, soundness is the most important factor to consider when it comes to the quality of grain. For grain farmers, high germination percentage and seed dormancy are the main features to consider. For consumers, properties such as color and flavor are most important.

<span class="mw-page-title-main">Pasta processing</span> Process of making pasta

Pasta processing is the process in which wheat semolina or flour is mixed with water and the dough is extruded to a specific shape, dried and packaged.

Compressed air dryers are special types of filter systems that are specifically designed to remove the water that is inherent in compressed air. The compression of air raises its temperature and concentrates atmospheric contaminants, primarily water vapor, as resulting in air with elevated temperature and 100% relative humidity. As the compressed air cools down, water vapor condenses into the tank(s), pipes, hoses and tools connected downstream from the compressor which may be damaging. Therefore water vapor is removed from compressed air to prevent condensation from occurring and to prevent moisture from interfering in sensitive industrial processes.

<span class="mw-page-title-main">Dried mango</span> Preserved fruit food product

The mango fruit is commonly dried and eaten as a snack.

References

  1. Food and Agriculture Organization. FAO.https://www.fao.org/3/S1250E/S1250E0v.htm
  2. D. Brooker, F. W. Bakker-Arkema, and C. W. Hall, The Drying and Storage of Grains and Oilseeds. Van Nostrand Reinhold. Avi Book, New York.
  3. CHIEF."Grain conditioning, storage, aeration guide".
  4. IRRI, Safe storage condition for grain
  5. North Dakota State University, Cooperative Extension Service, 1974, Grain Drying on the Farm.
  6. Hurburgh, Charles R., Bern, Carl J., Brumm, Thomas J,. "Chapter 7 Grain drying fundamentals. " in Managing Grain after Harvest, 2013
  7. BEHLEN Manufacturing Co. Modern grain conditioning, 1974.
  8. Bern, Carl J,. Hurburgh, Charles R,. Brumm, Thomas J,."Chapter 9 Grain drying methods" in Managing grain after harvest,2013.
  9. FS services, Inc., Bloomington, 1977, Grain drying guide.
  10. IRRI, International Rice Institute, Rice knowledge Bank, 2009.
  11. UWM, Wisconsin Energy Efficiency and Renewable Energy Resource.
  12. North Dakota State University, Cooperative extension service, 1974, Grain drying in the farm.
  13. "Maintaining Corn Grain Quality Through Harvest and Drying". www.pioneer.com. Retrieved 2015-10-19.