In agriculture, grain quality depends on the use of the grain. In ethanol production, the chemical composition of grain such as starch content is important, in food and feed manufacturing, properties such as protein, oil and sugar are significant, in the milling industry, soundness is the most important factor to consider when it comes to the quality of grain. For grain farmers, high germination percentage and seed dormancy are the main features to consider. For consumers, properties such as color and flavor are most important.
This section relies largely or entirely upon a single source .(August 2022) |
Overall quality of grain is affected by several factors, including: growing practices, time and type of harvesting, postharvest handling, storage management and transportation practices. [1]
The properties of grain quality can be summarized into ten main factors:
(i) Uniform moisture content
(ii) High test weight
(iii) No foreign material
(iv) Low percentage of discolored, broken and damaged kernels
(v) Low breakability
(vi) High milling quality
(vii) High protein and oil content
(viii) High viability
(ix) No aflatoxin (mycotoxin)
(x) No presence of insects and molds.
Grain quality is characterized according to two main types of factors: extrinsic, and intrinsic.
Extrinsic factors of grain grading include: age, broken grain, immature grain, foreign matter, infected grain, and moisture content.
Intrinsic factors of grain include: color, composition, bulk density, odor, aroma, size and shape.
Color is an important primary factor for the characterization, grading, trade, and processing of grain. It is a common criterion used in the wheat trade.
Grain composition plays a significant role in the grading and marketing of grains. The main constituents of grain are: carbohydrates, protein, lipids, minerals, fiber, phytic acid, and tannins. The exact composition can vary significantly depending on the type of grain, genetics, varieties, agricultural practice, and handling of the grain.
Bulk density is defined as the ratio of the mass to a given volume of a grain sample, including the interstitial voids between the particles.
Size and shape are important factors in grain quality and grading; they vary between grain to grain and between varieties of the same species. They are commonly used in rice grading; this is a key factor in the milling industry.
Grain grading and specification systems assure that a particular lot of grain meets the standards required by food regulation authorities, such as the FDA in the United States, and the FSA in the United Kingdom.
In many countries, grading of grain depends on four main properties: (i) bushel (test) weight, (ii) moisture content, (iii) broken foreign material or the percentage fragments example broken corn foreign materials[ clarification needed ], and (iv) damaged kernels (i.e. total and heat damaged)[ clarification needed ].
Test (bushel) weight, also known as volumetric weight, is one of the simplest and traditional criteria used to determine quality of grain and measure of grain bulk density. It is an indicator of general grain quality and primary grain specification: normally, a higher the test weight corresponds to higher quality, and lower test weight corresponds to lower quality, as grain quality decreases dramatically as grain deteriorates. [2] Test weight of grain is affected by many factors, including moisture contents (initial and final), frost damage, maturity, growing and harvesting conditions, drying conditions, fine material[ clarification needed ], degree of kernel damaged, and variety. [3]
Another important factor in determining grain quality is moisture content: the quantity of water per unit mass of grain, expressed on a percentage basis (i.e. wet basis or dry basis).[ clarification needed ] Moisture content does not directly affect grain quality, but can indirectly affect quality since grain will spoil if the moisture content is above that of the content recommended for storage.
Broken foreign material (FM) is an important factor in grading and classification of grains. It is described as foreign material other than grains, such as sand, pieces of rock, microplastics, metals, and pieces of glass, contaminating a particular lot of grain. In the grain trade, presence of more than a set percentage of FM results in either low grades, price discount, or lot rejection, because the higher the FM the more the cost to clean before use.
Damaged kernels (DK) are an important grading factor and negatively affect grain value. DK are considered those that have evident visual damage. It is usually quantified by removing damaged kernels by hand from portions free of impurities. The criteria for each grain of grade include an upper limit for the ampount of damaged kernels: for instance, for wheat to qualify as Grade 1, DK must constitute no more than 0.4% of the total weight. The majority of damage of kernels is caused by insects, heat, mold, weathering, sprouting, frost, diseases, non-uniform maturity, and/or lack of/partial grain filling.
In grading systems or specification, damaged kernels are divided into two main parts: heat damaged and total damaged. СЯыЧ
Important non-grain standards in U.S. grain standards include: (i) breakage susceptibility, (ii) milling quality, (iii) seed viability, (iv) nutritive value, (v) mold count and carcinogen content, and (vi) insect infestation and damage. [1]
Best example of grain quality can be described into two common grains (wheat and rice).
Grain color is an important characteristic in grain grading. One common form of color deterioration is milled rice discoloration. Rice changes to different classes of milled rice discoloration if stored improperly. Rice discoloration has been shown to largely be due to microbial and chemical reactions depending on storage temperature, moisture content, and duration. Based on U.S. standard, rice will be downgraded if there is one discolored kernel per 500 gr of rice samples. [4]
Wheat grain (Triticum aestivum L.) is the world's leading agricultural source of energy, protein and fiber; it belongs to family Gramineae and genus Triticum. Wheat grain can be categorized into three main classes: hard, soft and durum. Wheat quality can best be described in terms of end-user, nutritional quality, milling, and baking and rheology quality. In general, wheat needs to be sound, clean, well matured, and free from foreign material and damage. [5]
In general, criteria for wheat quality can be divided into three main groups: botanical, physical, and chemical characteristics.
This section needs expansion. You can help by adding to it. (July 2024) |
There are two main botanical criteria: species and varieties.
The main physical properties that influence wheat quality are grain weight (test weight), hardness, grain size and shape, vitreousness, and color. Physical properties of grain such as wheat play a very important role in the quality of the grain, and in final products such as flour.
Test weight[ clarification needed ] of wheat is considered the easiest and most common way to qualify wheat. It is an important quality factor in wheat grading as it gives rough estimates of flour yields. The basic factors that affect the test weight of wheat are kernel size and shape, kernel density, maturity of wheat, anseases and actual wheat variety. [6]
The hardness of wheat endosperm is critical in determining the suitability of wheat for various end products and influences the processing and milling of wheat. It is the common characteristic used by millers and traders to classify wheat. In terms of hardness, wheat can be classified as either hard or soft. [7]
In terms of color, wheat is classified into two classes: red wheat and white wheat. Hard red winter wheat is considered superior and commonly used for bread flour production, while white wheat is usually used for cakes, chapattis, and certain pasta noodles. Each type of wheat has different properties such as taste, baking quality and milling yields. [8]
Wheat vitreousness is an optical property used by many countries to grade or quantify durum wheat quality. Based on this, wheat can be placed into three main classes: vitreous, mealy and piebald. [9] Vitreous wheat differs from non-vitreous by kernel appearance (starchy and opaque) and is considered to be of better quality than non-vitreous kernels because of higher quality semolina protein, good color and uniform coarse granulation. [10]
Wheat grain, when harvested, typically has a moisture content of 10–12%. In most countries, moisture content is not part of the grading system, but it is the most important factor affecting the quality of wheat grain, hence[ clarification needed ] is inversely related to dry matter loss. [6] Moisture content is important in wheat quality because:
Protein is not an explicit wheat grading factor, but its quantity and quality are the most important properties in the wheat business. Most buyers and millers need to know the amount of protein contents of wheat before buying it. Wheat contains five different classes of protein: albumin (soluble in water), globulin (soluble in salt solution), gliadin (soluble in 70% aqueous ethanol), proteose and glutenin (soluble in dilute acid or alkali). [11]
Other important qualities of wheat are milling and baking quality.
Most wheat is commercially sold as milled flour or semolina, hence milling quality is a crucial factor in the wheat trade. Milling depends on three main factors:
Baking quality is another criterion used to determine the quality and suitability of wheat; baking quality depends on types of wheat uses and processing conditions, for instance the strong (hard) wheat are considered to be of higher quality and suitable for bread making, while most cakes are made from soft wheat flour, baking quality is determined by rheological properties of wheat flour. [13] The rheological property of wheat flour is essential because it determine other physical characteristics such as dough (baking) volume and sensory attributes. [14]
Wheat, like other cereals, is graded based on certain criteria, such as: test weight, purity, maximum percentage damaged and foreign materials. [15] In the United States, wheat is classified into classes and sub-classes. In classes, wheat is split into eight different groups: hard red spring, hard red winter, soft red winter, durum, hard white, soft white, mixed and un-classed wheat. These classes are further subdivided into five grades (US. No.1-5), [15] with the exception of unclassed wheat.
Rice belongs to the genus Oryza of the sub-tribe Oryzinae in the family Graminaea.
Three main categories of rice are:
There is no proper definition or description of rice quality; the quality depends on several factors such cooking practice and region and usages. For example, a rice miller will describe rice quality in terms of total recovery and/or head and broken rice kernels, while the food processing industry will define rice quality in terms of grain size, aroma, appearance and cookability.
In general many countries will assess rice quality using four main criteria:
In the United States three more factors have been added:
Common physical properties of rice are size, shape, color, uniformity, and general appearance. Other factors that contribute to the general appearance of rice are cleanliness, purity (freedom from other seeds), vitreousness, translucency, chalkiness, color, damaged and imperfect kernel.
In terms of grain size, rice grain can be categories into three main groups:
Example of length, shape and weight used in US grading system for brown rice kernels are shown below. [17]
Grain type | Length (mm) | Shape (ratio) [ clarification needed ] | weight (mg) |
---|---|---|---|
Long-grain | 6.61 to 7.5 | over 3 | 15–20 |
Medium-grain | 5.51 to 6.6 | 2.1 to 3 | 17–24 |
Short-grain | up to 5.5 | up to 2.1 | 20 -24 |
Test weight is another important grading factor of rice, it is related to bulk density, and used to measure the relative amount of foreign material or immature kernels, it is useful index in milling outturn. The average test weight per bushel of U.S. rough rice is 45 lb. [17]
Impurities and damaged rice considered as single most important factor of rice quality because it directly related to economic value of lot, example presence of sand and stones will increase the weight of grain and damage rubber when sent to the miller. Impurities and damaged rice contains dockage, damaged kernels, chalky grains, red rice, broken seed or kernels and odors. [17]
The main objective of rice milling is to remove the outer layer (hull), bran and germ with minimum damage to the endosperm. Milling quality of rice is another important criteria used in marketing, grading and classification of rice, as well as treatment such as conditioning, drying and parboiling, it is normally estimated by using milling yield. Milling yield varied depends on several factors such as grain types, varieties, chalkiness, drying and storing conditions, other includes environmental conditions and moisture contents at harvest.
The milling quality can be determined by two common parameters (i) total yield and (ii) head yield, also another parameters like degree of milling and broken rice are used to estimate milling quality an express in percentage. [16] By definition, milling quality is the ability of rice kernels to stand milling and or polishing without breakage, and to yield higher amount of recovery.
The nutritional component of rice is one of the most important indicators of quality; rice is predominantly a starchy food though it also contributes useful quantities of proteins and vitamins, mineral, pentosans and fiber. [18] The chemical composition (nutrients) of rice grain varies considerably and depends on factors like plant variety (breeds), environmental condition (i.e. location and season in which grown), fertilizer treatment, degree of milling, and condition of storage. The degree of milling and cooking methods influence loss of significant quantities of nutrients, hence most of the vitamins and minerals are in the surface layers.
The cooking quality is another important criterion as far as quality of rice is concerned, it is influenced by many factors such as cooking methods and time, bulk density, storage condition, varieties and cultivation methods.
The two most important physiochemical properties of cooking quality of rice are amylose content and gelatinization temperature.
It is another important factors in rice quality. Like other cereal, rice is a good source of starch, especially amylose. It is composed more than 80% starch, and at the molecular level, starch contains amylose (linear chains glucose of α (1–4) linkages) and amylopectin (branched chain glucose with α(1–6) linkage. [3] In terms of amylose rice can be classified as waxy 0–2%, very low 2–10%, low 10–20%, intermediate 20-25% and high 25–32% (rice dry basis). [19] Starch content (amylose) of rice is very important factors in grain yield, processing and palatability.
Gelatinization temperature is related to many factors such as cooking time, granula size, molecular size of starch fraction; it is also used as criteria classified rice in some countries. Like other factors it is also influenced by environment such as ripening temperature, genetic and rice varieties as well as cooking time. [3] Gelatinization temperature is direct related to amylose contents; the higher the amylose the higher the gelatinization temperature, hence high waxy rice has higher gelatinization temperature than waxy or very low waxy rice. [20]
The main criteria used by many countries and millers to grade rice are degree of milling, appearance (color), damaged (broken) and percentage of chalky kernels. In the United States rice is marketed according to three main properties size, color and condition (kernels damage), these properties direct related to quality, milling percentage and other processing conditions. [7] All properties are important in grading for instance, kernels with chalky are not desirable because give lower milling yields after processing and easy break during handling.
Color and degree of milling is another criterion mostly used to grade rice. By using these criteria rice can be graded into four main classes, under-milled, lightly milled, reasonably milled and well milled. Other factors also considered in grading of rice is test weight hence has been related to milling percentage, empty kernels, immature grain and higher amount of dockage. The average test of kernel weight for rice is 56 kg/hL for long, 58.5 kg/hL for medium and 60 kg/hL for short rice. [7] Grade and requirements of rice in USA [21]
A cereal is a grass cultivated for its edible grain. Cereals are the world's largest crops, and are therefore staple foods. They include rice, wheat, rye, oats, barley, millet, and maize. Edible grains from other plant families, such as buckwheat and quinoa, are pseudocereals. Most cereals are annuals, producing one crop from each planting, though rice is sometimes grown as a perennial. Winter varieties are hardy enough to be planted in the autumn, becoming dormant in the winter, and harvested in spring or early summer; spring varieties are planted in spring and harvested in late summer. The term cereal is derived from the name of the Roman goddess of grain crops and fertility, Ceres.
Malt is any cereal grain that has been made to germinate by soaking in water and then stopped from germinating further by drying with hot air, a process known as "malting". Malted grain is used to make beer, whisky, malted milk, malt vinegar, confections such as Maltesers and Whoppers, flavored drinks such as Horlicks, Ovaltine, and Milo, and some baked goods, such as malt loaf, bagels, and Rich Tea biscuits. Malted grain that has been ground into a coarse meal is known as "sweet meal".
Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets, and is contained in large amounts in staple foods such as wheat, potatoes, maize (corn), rice, and cassava (manioc).
Flour is a powder made by grinding raw grains, roots, beans, nuts, or seeds. Flours are used to make many different foods. Cereal flour, particularly wheat flour, is the main ingredient of bread, which is a staple food for many cultures. Corn flour has been important in Mesoamerican cuisine since ancient times and remains a staple in the Americas. Rye flour is a constituent of bread in both Central Europe and Northern Europe.
A mochi is a Japanese rice cake made of mochigome (もち米), a short-grain japonica glutinous rice, and sometimes other ingredients such as water, sugar, and cornstarch. The steamed rice is pounded into paste and molded into the desired shape. In Japan, it is traditionally made in a ceremony called mochitsuki. While eaten year-round, mochi is a traditional food for the Japanese New Year, and is commonly sold and eaten during that time.
Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch, making up approximately 20–30%. Because of its tightly packed helical structure, amylose is more resistant to digestion than other starch molecules and is therefore an important form of resistant starch.
Wheat flour is a powder made from the grinding of common wheat used for human consumption. Wheat varieties are called "soft" or "weak" if gluten content is low, and are called "hard" or "strong" if they have high gluten content. Hard flour, or bread flour, is high in gluten, with 12% to 14% gluten content, and its dough has elastic toughness that holds its shape well once baked. Soft flour is comparatively low in gluten and thus results in a loaf with a finer, crumbly texture. Soft flour is usually divided into cake flour, which is the lowest in gluten, and pastry flour, which has slightly more gluten than cake flour.
Parboiled rice, also called converted rice, easy-cook rice, sella rice, and miniket is rice that has been partially boiled in the husk. The three basic steps of parboiling are soaking, steaming and drying. These steps make the rice easier to process by hand, while also boosting its nutritional profile, changing its texture, and making it more resistant to weevils. The treatment is practiced in many other parts of the world.
A whole grain is a grain of any cereal and pseudocereal that contains the endosperm, germ, and bran, in contrast to refined grains, which retain only the endosperm.
Digitaria exilis, referred to as findi or fundi in areas of Africa, such as The Gambia, with English common names white fonio, fonio millet, and hungry rice or acha rice, is a grass species. It is the most important of a diverse group of wild and domesticated Digitaria species known as fonio that are harvested in the savannas of West Africa. The grains are very small. It has potential to improve nutrition, boost food security, foster rural development and support sustainable use of the land. Despite its valuable characteristics and widespread cultivation, fonio has generally received limited research and development attention, which is also why the species is sometimes referred to as an underutilized crop.
Corn kernels are the fruits of corn. Maize is a grain, and the kernels are used in cooking as a vegetable or a source of starch. The kernel comprise endosperm, germ, pericarp, and tip cap.
Waxy corn or glutinous corn is a type of field corn characterized by its sticky texture when cooked as a result of larger amounts of amylopectin. The corn was first described from a specimen from China in 1909. As this plant showed many peculiar traits, the American breeders long used it as a genetic marker to tag the existence of hidden genes in other maize breeding programs. In 1922 a researcher found that the endosperm of waxy maize contained only amylopectin and no amylose starch molecule in opposition to normal dent corn varieties that contain both. Until World War II, the main source of starch in the United States was tapioca, but when Japan severed the supply lines of the U.S., they forced processors to turn to waxy maize. Amylopectin or waxy starch is now used mainly in food products, but also in the textile, adhesive, corrugating and paper industry.
Grains may be lost in the pre-harvest, harvest, and post-harvest stages. Pre-harvest losses occur before the process of harvesting begins, and may be due to insects, weeds, and rusts. Harvest losses occur between the beginning and completion of harvesting, and are primarily caused by losses due to shattering. Post-harvest losses occur between harvest and the moment of human consumption. They include on-farm losses, such as when grain is threshed, winnowed, and dried. Other on-farm losses include inadequate harvesting time, climatic conditions, practices applied at harvest and handling, and challenges in marketing produce. Significant losses are caused by inadequate storage conditions as well as decisions made at earlier stages of the supply chain, including transportation, storage, and processing, which predispose products to a shorter shelf life.
Malting is the process of steeping, germinating and drying grain to convert it into malt. Germination and sprouting involve a number of enzymes to produce the changes from seed to seedling and the malt producer stops this stage of the process when the required enzymes are optimal. Among other things, the enzymes convert starch to sugars such as maltose, maltotriose and maltodextrines.
Grain damage is any degradation in the quality of grain. In the current grain trade, this damage can affect price, feed quality, food product quality, and susceptibility to pest contamination.
Grain drying is the process of drying grain to prevent spoilage during storage. Artificial grain drying uses fuel or electricity powered processes supplementary to natural ones, including swathing/windrowing for air and sun drying, or stooking before threshing.
Puffcorn or corn puffs are puffed or extruded corn snacks made with corn meal, which can be baked or fried.
Corn wet-milling is a process of breaking corn kernels into their component parts: corn oil, protein, corn starch, and fiber. It uses water and a series of steps to separate the parts to be used for various products.
Dry milling of grain is mainly utilized to manufacture feedstock into consumer and industrial based products. This process is widely associated with the development of new bio-based associated by-products. The milling process separates the grain into four distinct physical components: the germ, flour, fine grits, and coarse grits. The separated materials are then reduced into food products utilized for human and animal consumption.
Rice is commonly consumed as food around the world. It occurs in long-, medium-, and short-grained types. It is the staple food of over half the world's population.