Granada medium

Last updated

Granada medium is a selective and differential culture medium designed to selectively isolate Streptococcus agalactiae (Group B streptococcus, GBS) and differentiate it from other microorganisms. Granada Medium was developed by Manuel Rosa-Fraile et al. at the Service of Microbiology in the Hospital Virgen de las Nieves in Granada (Spain). [1]

Contents

Identification of GBS on granada medium is straightforward and relies on detection of granadaene, a red polyenic pigment specific of GBS. [2] [3] [4]

Streptococcus agalactiae on granada agar, anaerobic incubation Streptococcus agalactiae on Granada medium.jpg
Streptococcus agalactiae on granada agar, anaerobic incubation
Streptococcus agalactiae on granada broth GBS IGRB.jpg
Streptococcus agalactiae on granada broth

Granada medium is marketed in the US by Hardy Diagnostics [5] and in the European Union and UK as a trade mark (®) by Biomerieux [6] and Becton Dickinson. [7]

Composition

Ingredient [1] AmountFunction
Agar10gGelling agent
Bacto™ Proteose Peptone #3, (Difco) BD25gSpecific nutrient, It cannot be substituted by any alternative peptone
Starch 20gPigment stabilizer
Glucose 2.5gNutrient
Horse serum15mlNutrient
MOPS ( 3-(N-morpholino)propanesulfonic acid) hemisodium salt11g Good's buffer
Disodium hydrogen phosphate8.5g Buffer
Sodium pyruvate 1gAdditional source of energy, protective effects against reactive oxygen species
Magnesium sulfate0.2g------
Methotrexate 6 mgPigment enhancer
Crystal violet 0.2 mgInhibit the growth of gram-positive bacteria
Colistin sulfate 5 mgInhibit the growth of gram-negative bacteria
Metronidazole 1 mgInhibit the growth of anaerobic bacteria
Water1000ml

pH 7.45±0.1

Background and principles

Granada medium was developed for selective isolation and identification of GBS from clinical specimens. [1] Production of a red pigment (granadaene) on granada medium is unique to β-hemolytic group B streptococci isolated from humans. [8]

Granadaene is a non-isoprenoid polyenic pigment (ornithinrhamnododecaene) with a conjugated system of 12 double bonds. [3] [9] [10]

β-hemolysis and pigment production are encoded in GBS by a gene cluster of 12 genes, the cyl cluster. [11] [12] Moreover, it has been suggested that GBS pigment and hemolysin are identical or closely related molecules and it has also been reported that they are important factors contributing to GBS virulence. [8] [13] [14]

Components

Granada agar consists primarily of a proteose peptone starch agar buffered with MOPS (a Good's buffer) and phosphate and supplemented with methotrexate and antibiotics. [1] Proteose peptone, horse serum, glucose and sodium pyruvate provide nutrients for the growth of Streptococcus agalactiae, sodium pyruvate provide also protective effect against reactive oxygen species (ROS). MOPS and phosphate buffer the medium. Methotrexate triggers pigment production [8] and starch stabilizes the pigment. [8] The selective supplement contains the antibiotics, colistin (inhibitory for gram-negative bacteria) and metronidazole (inhibitory for anaerobic bacteria), and crystal violet to suppress the accompanying gram-positive bacteria.

Granadaene Granadaene.png
Granadaene

A key component of granada medium is Proteose Peptone N3 (Difco & BD). This pepsic peptone was developed by DIFCO (Digestive Ferments Company) during the First World War for producing bacterial toxins for vaccine production. [15]

Fort development of red-brick colonies of GBS in granada medium it is necessary the presence of the peptide Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe in the culture medium. This peptide only is produced during the hydrolysis with pepsin of mammal albumin. [16]

For optimal production of pigment it is also necessary the presence in the peptone of other substances (uncharacterized at present) from mammal gastrointestinal wall tissues used to prepare some peptones. [17]

The presence of starch is a basic requirement to stabilize the pigment allowing the development of red colonies of GBS. [8]

Nevertheless, if soluble starch is used it results in a culture medium that deteriorates quickly at room temperature because soluble starch is hydrolysed by serum (added as supplement) amylase. This drawback can be addressed either not using serum or using unmodified starches to prepare the culture medium, because unmodified starches are more resistant to the hydrolytic action of amylase. [18]

Uses

GBS grows on granada agar as pink-red colonies after 18–48 hours of incubation (35–37 °C), better results are obtained in anaerobiosis (culturing in an anaerobic environment). [1]

Granada agar is used for the primary isolation, identification and screening of β-hemolytic GBS from clinical specimens. [2] [4] This culture medium is selective for GBS, nevertheless other microorganisms (such as enterococci and yeasts), resistant to the selective agents used, can develop as colorless or white colonies. [2]

Red colonies of Streptococcus agalactiae on granada agar. Vagino-rectal culture 18h incubation 36degC anaerobiosis S agalactiae vagino-rectal culture GRANADA.png
Red colonies of Streptococcus agalactiae on granada agar. Vagino-rectal culture 18h incubation 36°C anaerobiosis

Granada agar is useful for the screening of pregnant women for the detection of vaginal and rectal colonization with GBS to use intrapartum antibiotic prophylaxis to avoid early-onset GBS infection in the newborn. [19] [20] [21] [22] It has also been suggested that GBS pigmentation on Granada agar can help to identify pregnant women and newborns at increased risk for developing invasive GBS disease [23]

Procedure

The specimens can be directly streaked on a plate of granada agar or after an enrichment step to obtain maximum isolation. [20] Specimens should be streaked as soon as possible after they are received in the laboratory. If material is being cultured from a swab (e.g.- from a vaginal or vagino-rectal swab), roll swab directly onto the agar plate to provide adequate exposure of the swab to the medium for maximum transfer of organisms. Place the culture in an anaerobic environment, incubate at 35-37 °C, and examine after overnight incubation, and again after approximately 48 hours. [1]

To increase recovery of GBS, swabs can also be inoculated previously into a selective enrichment broth medium, such as the Todd-Hewitt broth supplemented with gentamicin or colistin and nalidixic acid and incubated for 18–24 hours at 35-37 °C. [20] [21] [22]

Results

Colonies of β-hemolytic GBS appear on granada medium as pink or red colonies, and they are easily distinguished from other microorganisms that may have also grown on the plate. Any degree of orange development should be considered indicative of a GBS colony, and further identification tests are not necessary. [2] Non-β-hemolytic GBS develops on granada agar as white colonies that, if necessary, can be further tested using latex agglutination or the CAMP test. [4] [20]

Variant

Colonies of Streptococcus agalactiae on granada agar, aerobiosis, coverslip technique Streptococcus agalactiae cultivo en medio Granada, incubacion aerobiosis.jpg
Colonies of Streptococcus agalactiae on granada agar, aerobiosis, coverslip technique

Granada agar plates can also be incubated aerobically provided that a coverslip is placed over the inoculum on the plate. [2]

Granada medium can also be used as liquid media (granada broths) [24] such as Strep B carrot broth [25] When using granada media liquids anaerobic incubation is not necessary. [2]

Granadaene and Streptococcus agalactiae

β-hemolysis and pigment (granadaene) production are encoded in GBS by a gene cluster of 12 genes, the cyl cluster. [11] [12]

Moreover, it has been suggested that GBS pigment and hemolysin are identical or closely related molecules and it has also been reported that they are important factors contributing to GBS virulence. [8] [13] [14]

Nevertheless, 1–5% of GBS strains are non-hemolytic and do not produce pigment. [8] However these non-hemolytic and non-pigmented GBS strains (lacking pigment and hemolysin) are considered less virulent. [13] [14] [26] [27] [28] [29]

Related Research Articles

<i>Streptococcus</i> Genus of bacteria

Streptococcus is a genus of gram-positive coccus or spherical bacteria that belongs to the family Streptococcaceae, within the order Lactobacillales, in the phylum Bacillota. Cell division in streptococci occurs along a single axis, thus when growing they tend to form pairs or chains, which may appear bent or twisted. This differs from staphylococci, which divide along multiple axes, thereby generating irregular, grape-like clusters of cells. Most streptococci are oxidase-negative and catalase-negative, and many are facultative anaerobes.

<span class="mw-page-title-main">Agar plate</span> Petri dish with agar used to culture microbes

An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.

<span class="mw-page-title-main">Viridans streptococci</span> Species of bacterium

The viridans streptococci are a large group of commensal streptococcal Gram-positive bacteria species that are α-hemolytic, producing a green coloration on blood agar plates, although some species in this group are actually γ-hemolytic, meaning they produce no change on blood agar. The pseudo-taxonomic term "Streptococcus viridans" is often used to refer to this group of species, but writers who do not like to use the pseudotaxonomic term prefer the terms viridans streptococci, viridans group streptococci (VGS), or viridans streptococcal species.

<i>Streptococcus agalactiae</i> Species of bacterium

Streptococcus agalactiae is a gram-positive coccus with a tendency to form chains. It is a beta-hemolytic, catalase-negative, and facultative anaerobe.

<span class="mw-page-title-main">Hemolysis (microbiology)</span> Breakdown of red blood cells

Hemolysis is the breakdown of red blood cells. The ability of bacterial colonies to induce hemolysis when grown on blood agar is used to classify certain microorganisms. This is particularly useful in classifying streptococcal species. A substance that causes hemolysis is a hemolysin.

Streptococcus bovis is a species of Gram-positive bacteria that in humans is associated with urinary tract infections, endocarditis, sepsis, and colorectal cancer. S. gallolyticus is commonly found in the alimentary tract of cattle, sheep, and other ruminants, and may cause ruminal acidosis or feedlot bloat. It is also associated with spontaneous bacterial peritonitis, a frequent complication occurring in patients affected by cirrhosis. Equivalence with Streptococcus equinus has been contested.

<span class="mw-page-title-main">Group B streptococcal infection</span> Medical condition

Group B streptococcal infection, also known as Group B streptococcal disease or just Group B strep infection, is the infectious disease caused by the bacterium Streptococcus agalactiae, which is the most common human pathogen belonging to the group B of the Lancefield classification of streptococci—hence the group B stretococcal (GBS) infection nomenclature. Infection with GBS can cause serious illness and sometimes death, especially in newborns, the elderly, and people with compromised immune systems. The most severe form of group B streptococcal disease is neonatal meningitis in infants, which is frequently lethal and can cause permanent neuro-cognitive impairment.

<span class="mw-page-title-main">Etest</span>

Etest is a way of determining antimicrobial sensitivity by placing a strip impregnated with antimicrobials onto an agar plate. A strain of bacterium or fungus will not grow near a concentration of antibiotic or antifungal if it is sensitive. For some microbial and antimicrobial combinations, the results can be used to determine a minimum inhibitory concentration (MIC). Etest is a proprietary system manufactured by bioMérieux. It is a laboratory test used in healthcare settings to help guide physicians by indicating what concentration of antimicrobial could successfully be used to treat patients' infections.

<span class="mw-page-title-main">Hektoen enteric agar</span> Selective and differential agar

Hektoen enteric agar is a selective and differential agar primarily used to recover Salmonella and Shigella from patient specimens. HEA contains indicators of lactose fermentation and hydrogen sulfide production; as well as inhibitors to prevent the growth of Gram-positive bacteria. It is named after the Hektoen Institute in Chicago, where researchers developed the agar.

<span class="mw-page-title-main">Mueller–Hinton agar</span> Culture medium used in microbiology

Mueller Hinton agar is a type of growth medium used in microbiology to culture bacterial isolates and test their susceptibility to antibiotics. This medium was first developed in 1941 by John Howard Mueller and Jane Hinton, who were microbiologists working at Harvard University. However, Mueller Hinton agar is made up of a couple of components, including beef extract, acid hydrolysate of casein, and starch, as well as agar to solidify the mixture. The composition of Mueller Hinton agar can vary depending on the manufacturer and the intended use, but the medium is generally nutrient-rich and free of inhibitors that could interfere with bacterial growth.                                

<span class="mw-page-title-main">Sabouraud agar</span> Agar media containing peptones

Sabouraud agar or Sabouraud dextrose agar (SDA) is a type of agar growth medium containing peptones. It is used to cultivate dermatophytes and other types of fungi, and can also grow filamentous bacteria such as Nocardia. It has utility for research and clinical care.

<span class="mw-page-title-main">CAMP test</span> Microbiological method for identification

The CAMP test (Christie–Atkins–Munch-Peterson) is a test to identify group B β-hemolytic streptococci based on their formation of a substance that enlarges the area of hemolysis formed by the β-hemolysin elaborated from Staphylococcus aureus.

Streptococcus intermedius is an aerotolerant anaerobic commensal bacterium and a member of the Streptococcus anginosus group. The S. anginosus group, occasionally termed “Streptococcus milleri group” (SMG) display hemolytic and serologic diversity, yet share core physiological traits. Though the three members of the SMG are phenotypically diverse, one common trait they share is the mechanism of producing the metabolite diacetyl, which contributes to generating a signature caramel odor. Despite being commensal organisms, members of the S. anginosus group display wide pathogenic potential. S. intermedius has been isolated from patients with periodontitis and fatal purulent infections, especially brain and liver abscesses.

<i>Streptococcus dysgalactiae</i> Species of bacterium

Streptococcus dysgalactiae is a gram positive, beta-haemolytic, coccal bacterium belonging to the family Streptococcaceae. It is capable of infecting both humans and animals, but is most frequently encountered as a commensal of the alimentary tract, genital tract, or less commonly, as a part of the skin flora. The clinical manifestations in human disease range from superficial skin-infections and tonsillitis, to severe necrotising fasciitis and bacteraemia. The incidence of invasive disease has been reported to be rising. Several different animal species are susceptible to infection by S. dysgalactiae, but bovine mastitis and infectious arthritis in lambs have been most frequently reported.

<i>Streptococcus zooepidemicus</i> Species of bacterium

Streptococcus zooepidemicus is a Lancefield group C streptococcus that was first isolated in 1934 by P. R. Edwards, and named Animal pyogens A. It is a mucosal commensal and opportunistic pathogen that infects several animals and humans, but most commonly isolated from the uterus of mares. It is a subspecies of Streptococcus equi, a contagious upper respiratory tract infection of horses, and shares greater than 98% DNA homology, as well as many of the same virulence factors.

<i>Streptococcus iniae</i> Species of bacterium

Streptococcus iniae is a species of Gram-positive, sphere-shaped bacterium belonging to the genus Streptococcus. Since its isolation from an Amazon freshwater dolphin in the 1970s, S. iniae has emerged as a leading fish pathogen in aquaculture operations worldwide, resulting in over US$100M in annual losses. Since its discovery, S. iniae infections have been reported in at least 27 species of cultured or wild fish from around the world. Freshwater and saltwater fish including tilapia, red drum, hybrid striped bass, and rainbow trout are among those susceptible to infection by S. iniae. Infections in fish manifest as meningoencephalitis, skin lesions, and septicemia.

<span class="mw-page-title-main">Lancefield grouping</span> System for classifying streptococci bacteria

Lancefield grouping is a system of classification that classifies catalase-negative Gram-positive cocci based on the carbohydrate composition of bacterial antigens found on their cell walls. The system, created by Rebecca Lancefield, was historically used to organize the various members of the family Streptococcaceae, which includes the genera Lactococcus and Streptococcus, but now is largely superfluous due to explosive growth in the number of streptococcal species identified since the 1970s. However, it has retained some clinical usefulness even after the taxonomic changes, and as of 2018, Lancefield designations are still often used to communicate medical microbiological test results.

Granadaene is the trivial name of a non-isoprenoid polyene that constitutes the red pigment characteristic of Streptococcus agalactiae.

Diagnostic microbiology is the study of microbial identification. Since the discovery of the germ theory of disease, scientists have been finding ways to harvest specific organisms. Using methods such as differential media or genome sequencing, physicians and scientists can observe novel functions in organisms for more effective and accurate diagnosis of organisms. Methods used in diagnostic microbiology are often used to take advantage of a particular difference in organisms and attain information about what species it can be identified as, which is often through a reference of previous studies. New studies provide information that others can reference so that scientists can attain a basic understanding of the organism they are examining.

Streptococcosis is an infectious disease caused by bacteria of the genus Steptococcus. This disease is most common among horses, guinea pigs, dogs, cats, and fish with symptoms varying based on the streptococcal species involved. In humans, this disease typically involves a throat infection and is called streptococcal pharyngitis or strep throat.

References

  1. 1 2 3 4 5 6 Rosa M, Perez M, Carazo C, Peis JI, Pareja L, Hernandez F (1992). "New Granada Medium for Detection and Identification of Group B Streptococci". Journal of Clinical Microbiology. 30 (4): 1019–1021. doi:10.1128/JCM.30.4.1019-1021.1992. PMC   265207 . PMID   1572958.
  2. 1 2 3 4 5 6 Rosa-Fraile M, Rodriguez-Granger J, Cueto-Lopez M, Sampedro A, Biel Gaye E, Haro M, Andreu A (1999). "Use of Granada Medium To Detect Group B Streptococcal Colonization in Pregnant Women". Journal of Clinical Microbiology. 37 (8): 2674–2677. doi:10.1128/JCM.37.8.2674-2677.1999. PMC   85311 . PMID   10405420.
  3. 1 2 Rosa-Fraile M, Rodriguez-Granger J, Haidour-Benamin A, Cuerva JM, Sampedro A (2006). "Granadaene: Proposed Structure of the Group B Streptococcus Polyenic Pigment". Applied and Environmental Microbiology. 72 (9): 6367–6370. Bibcode:2006ApEnM..72.6367R. doi:10.1128/aem.00756-06. PMC   1563658 . PMID   16957264.
  4. 1 2 3 Rosa-Fraile M, Spellerberg B (September 2017). "Reliable Detection of Group B Streptococcus in the Clinical Laboratory". Journal of Clinical Microbiology. 55 (9): 2590–2598. doi:10.1128/JCM.00582-17. PMC   5648696 . PMID   28659318.
  5. "Granada Medium" (PDF). Haerdy Diagnostics. Retrieved 21 October 2023.
  6. "Granada agar". Biomerieux. Retrieved 21 October 2023.
  7. "BD Group B Streptococcus Differential Agar (Granada Medium)" . Retrieved 21 October 2023.
  8. 1 2 3 4 5 6 7 Rosa-Fraile M, Dramsi S, Spellerberg B (2014). "Group B streptococcal haemolysin and pigment, a tale of twins". FEMS Microbiology Reviews. 38 (5): 932–946. doi:10.1111/1574-6976.12071. PMC   4315905 . PMID   24617549.
  9. Paradas M, Jurado R, Haidour A, Rodríguez Granger J, Sampedro Martínez A, de la Rosa Fraile M, Robles R, Justicia J, Cuerva JM (2012). "Clarifying the structure of granadaene: total synthesis of related analogue [2]-granadaene and confirmation of its absolute stereochemistry". Bioorganic & Medicinal Chemistry. 20 (22): 6655–6651. doi:10.1016/j.bmc.2012.09.017. PMID   23043725.
  10. Madden KS, Mosa FA, Whiting A (2014). "Non-isoprenoid polyene natural products – structures and synthetic strategies". Organic and Biomolecular Chemistry. 12 (40): 7877–7899. doi:10.1039/C4OB01337A. PMID   25188767.
  11. 1 2 Spellerberg B, Pohl B, Haase G, Martin S, Weber-Heynemann J, Lutticken R (1999). "Identification of Genetic Determinants for the Hemolytic Activity of Streptococcus agalactiae by ISS1 Transposition". Journal of Bacteriology. 181 (10): 3212–3219. doi:10.1128/JB.181.10.3212-3219.1999. PMC   93778 . PMID   10322024.
  12. 1 2 Spellerberg B, Martin S, Brandt C, Lutticken R (2000). "The cyl genes of Streptococcus agalactiae are involved in the production of pigment". FEMS Microbiology Letters. 188 (2): 125–128. doi: 10.1016/s0378-1097(00)00224-x . PMID   10913694.
  13. 1 2 3 Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, Aravind L, Hitti J, Adams Waldorf KM, Rajagopal L (2013). "A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta". Journal of Experimental Medicine. 219 (6): 1265–1281. doi:10.1084/jem.20122753. PMC   3674703 . PMID   23712433.
  14. 1 2 3 Whidbey C, Vornhagen J, Gendrin C, Boldenow E, Samson JM, Doering K, Ngo L, Ezekwe EA Jr, Gundlach JH, Elovitz MA, Liggitt D, Duncan JA, Adams Waldorf KM, Rajagopal L (2015). "A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury". EMBO Molecular Medicine. 7 (4): 488–505. doi:10.15252/emmm.201404883. PMC   4403049 . PMID   25750210.
  15. Difco & BBL. Manual of Microbiological Culture Media 2nd Edition. BD Diagnostics – Diagnostic Systems. 2009. p. 450. ISBN   978-0-9727207-1-7.
  16. Rosa-Fraile M, Sampedro A, Varela J, Garcia-Peña M, Gimenez-Gallego G (1999). "Identification of a peptide from mammal albumins responsible for enhanced pigment production by group B streptococci". Clin Diagn Lab Immunol. 6 (3): 425–426. doi:10.1128/CDLI.6.3.425-426.1999. PMC   103735 . PMID   10225848.
  17. Enrique Camacho Muñoz (2005). Importancia de la Proteosa Peptona No 3 en la Producción de Pigmento por Streptococcus agalactiae en el Medio Granada (PDF). Universidad de Granada. ISBN   978-84-338-3741-7 . Retrieved 24 June 2016.
  18. Rosa-Fraile M, Rodríguez-Granger J, Camacho-Muñoz E, Sampedro A (2005). "Use of unmodified starches and partial removal of serum to improve Granada medium stability". Journal of Clinical Microbiology. 43 (4): 18889–1991. doi:10.1128/JCM.43.4.1989-1991.2005. PMC   1081375 . PMID   15815040.
  19. Rosa-Fraile M, Spellerberg B. (2017). "Reliable Detection of Group B Streptococcus in the Clinical Laboratory". J Clin Microbiol. 55 (9): 2590–2598. doi:10.1128/JCM.00582-17. PMC   5648696 . PMID   28659318.
  20. 1 2 3 4 Verani JR, McGee L, Schrag SJ (2010). "Prevention of Perinatal Group B Streptococcal Disease Revised Guidelines from CDC, 2010" (PDF). MMWR Recomm Rep. 59 (RR-10): 1–32. PMID   21088663.
  21. 1 2 Laura Filkins, Jocelyn R Hauser, Barbara Robinson-Dunn, Robert Tibbetts, Bobby L Boyanton Jr, Paula Revell, American Society for Microbiology Clinical and Public Health Microbiology Committee, Subcommittee on Laboratory Practices (2020). "American Society for Microbiology provides 2020 Guidelines for Detection and Identification of Group B Streptococcus" (PDF). Journal of Clinical Microbiology. JCM.01230-20. (1): e01230-20. doi: 10.1128/JCM.01230-20 . PMC   7771461 . PMID   33115849. S2CID   226049927 . Retrieved 14 December 2020.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. 1 2 Filkins L, Hauser J, Robinson-Dunn B, Tibbetts R, Boyanton B, Revell P. "Guidelines for the Detection and Identification of Group B Streptococcus. American Society for Microbiology. 2020".{{cite web}}: CS1 maint: multiple names: authors list (link)
  23. Huebner EM, Gudjónsdóttir MJ, Dacanay MB, Nguyen S, Brokaw A, Sharma K, Elfvin A, Hentz E, Rivera YR, Burd N, Shivakumar M, Coler B, Li M, Li A, Munson J, Orvis A, Coleman M, Jacobsson B, Rajagopal L, Adams Waldorf KM. (2022). "Virulence, phenotype and genotype characteristics of invasive group B Streptococcus isolates obtained from Swedish pregnant women and neonates". Annals of Clinical Microbiology and Antimicrobials. 21 (1): 43. doi: 10.1186/s12941-022-00534-2 . PMC   9560721 . PMID   36229877.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Carvalho Mda G, Facklam R, Jackson D, Beall B, McGee L. (2009). "Evaluation of three commercial broth media for pigment detection and identification of a group B Streptococcus (Streptococcus agalactiae)". J Clin Microbiol. 47 (12): 4161–4163. doi:10.1128/JCM.01374-09. PMC   2786674 . PMID   19812277.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. "STREP B CARROT BROTH™" (PDF). Retrieved 17 October 2023.
  26. Christopher-Mychael Whidbey (2015). Characterization of the Group B Streptococcus Hemolysin and its Role in Intrauterine Infection (PDF). University of Washington. Retrieved 23 June 2016.
  27. Rodriguez-Granger J, Spellerberg B, Asam D, Rosa-Fraile M (2015). "Non-haemolytic and non-pigmented group b streptococcus, an infrequent cause of early onset neonatal sepsis". Pathogens and Disease. 73 (9): ftv089. doi:10.1093/femspd/ftv089. PMC   4626576 . PMID   26449711.
  28. Armistead B, Oler E, Adams Waldorf K, Rajagopal L. (2019). "The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen". Journal of Molecular Biology. 431 (16): 2914–2931. doi:10.1016/j.jmb.2019.01.035. PMC   6646060 . PMID   30711542.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Armistead B, Quach P, Snyder JM, Santana-Ufret V, Furuta A, Brokaw A, Rajagopal L. (2020). "Hemolytic membrane vesicles of Group B Streptococcus promote infection". The Journal of Infectious Diseases. jiaa548 (8): 1488–1496. doi:10.1093/infdis/jiaa548. PMC   8064051 . PMID   32861213.{{cite journal}}: CS1 maint: multiple names: authors list (link)