Grassmann graph Last updated May 15, 2025 Graph-theoretic properties J q (n , k ) is isomorphic to J q (n , n − k ) .For all 0 ≤ d ≤ diam(J q (n ,k )) , the intersection of any pair of vertices at distance d is (k − d ) -dimensional. The clique number of J q (n ,k ) is given by an expression in terms its least and greatest eigenvalues λ min and λ max : ω ( J q ( n , k ) ) = 1 − λ max λ min {\displaystyle \omega \left(J_{q}(n,k)\right)=1-{\frac {\lambda _{\max }}{\lambda _{\min }}}} [ citation needed ] Automorphism group There is a distance-transitive subgroup of Aut ( J q ( n , k ) ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))} isomorphic to the projective linear group P Γ L ( n , q ) {\displaystyle \operatorname {P\Gamma L} (n,q)} .[ citation needed ]
In fact, unless n = 2 k {\displaystyle n=2k} or k ∈ { 1 , n − 1 } {\displaystyle k\in \{1,n-1\}} , Aut ( J q ( n , k ) ) ≅ P Γ L ( n , q ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {P\Gamma L} (n,q)} ; otherwise Aut ( J q ( n , k ) ) ≅ P Γ L ( n , q ) × C 2 {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {P\Gamma L} (n,q)\times C_{2}} or Aut ( J q ( n , k ) ) ≅ Sym ( [ n ] q ) {\displaystyle \operatorname {Aut} (J_{q}(n,k))\cong \operatorname {Sym} ([n]_{q})} respectively. [ 1]
Intersection array As a consequence of being distance-transitive, J q ( n , k ) {\displaystyle J_{q}(n,k)} is also distance-regular . Letting d {\displaystyle d} denote its diameter , the intersection array of J q ( n , k ) {\displaystyle J_{q}(n,k)} is given by { b 0 , … , b d − 1 ; c 1 , … c d } {\displaystyle \left\{b_{0},\ldots ,b_{d-1};c_{1},\ldots c_{d}\right\}} where:
b j := q 2 j + 1 [ k − j ] q [ n − k − j ] q {\displaystyle b_{j}:=q^{2j+1}[k-j]_{q}[n-k-j]_{q}} for all 0 ≤ j < d {\displaystyle 0\leq j<d} .c j := ( [ j ] q ) 2 {\displaystyle c_{j}:=([j]_{q})^{2}} for all 0 < j ≤ d {\displaystyle 0<j\leq d} .Spectrum The characteristic polynomial of J q ( n , k ) {\displaystyle J_{q}(n,k)} is given by φ ( x ) := ∏ j = 0 diam ( J q ( n , k ) ) ( x − ( q j + 1 [ k − j ] q [ n − k − j ] q − [ j ] q ) ) ( ( n j ) q − ( n j − 1 ) q ) {\displaystyle \varphi (x):=\prod \limits _{j=0}^{\operatorname {diam} (J_{q}(n,k))}\left(x-\left(q^{j+1}[k-j]_{q}[n-k-j]_{q}-[j]_{q}\right)\right)^{\left({\binom {n}{j}}_{q}-{\binom {n}{j-1}}_{q}\right)}} . [ 1] This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.