Gregarina garnhami

Last updated

Gregarina garnhami
Gregarina Garnhami.jpg
Autofluorescence of Gregarina garnhami
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
G. garnhami
Binomial name
Gregarina garnhami
Canning, 1956 [1]

Gregarina garnhami is a eukaryotic unicellular organism belonging to the Apicomplexa described in 1956 by Canning as a parasite found in several locusts, such as the desert locust, African migratory locust, and Egyptian locust. Especially, the desert locust is the host for this species, as up to 100% of animals can become infected. [1] An estimated thousands of different species of gregarines can be in insects and 99% of these gregarines still need to be described. Each insect is said to host multiple species. [2] [3] A remarkable feature of G. garnhami is its autofluorescence.[ citation needed ]

Contents

Taxonomy

Gregarina garnhami was considered by Lipa et al. in 1996 [4] to be synonymous with Gregarina acridiorum (Léger, 1893), a parasite of several orthopteran species including Locusta migratoria. Indeed, G. acridiorum and G. garnhami share common morphological and behavioral characteristics, such as their development in the midgut of their hosts, a small globular epimerite, stout bodied gamonts, and barrel-shaped (or dolioform) oocysts. [5] In 2021, an integrative taxonomy study, using morphological and molecular characters, concluded that the two species were distinct and thus confirmed the validity of G. garnhami. However, phenotypic plasticity was clearly observed in the case of G. garnhami: the morphology of its trophozoites, gamonts and syzygies varied according to the geographical location of S. gregaria and the subspecies infected. [5]

Cell structure

Structure of a septate (right) and aseptate (left) eugregarine Gregarine sketch.jpg
Structure of a septate (right) and aseptate (left) eugregarine

Gregarina garnhami is a gregarine that belongs to the septate eugregarines, meaning its cell is separated into parts. In G. garnhami, three parts can be seen: epimerite, protomerite, and deutomerite, but their visibility depends on the lifestage of the organism. A characteristic of gregarines is the typical construction of the pellicula that is formed by a cell membrane and two cytoplasmic membranes (the latter is often referred to as the inner membrane complex, IMC or alveoli). The membranes' proximity to one another often makes them difficult to distinguish. This structure is often also referred to as the trilayered structure. Beneath the inner membrane, a basal (internal) lamina can be seen, which separates the foldings around the cell from the rest of the cell. These foldings form the outer surface of G. garnhami, and hundreds of these can be observed at the surface enlarging the surface of the cell. [6] [7] [8] [9] [10] The cytoplasm of the cell (in the epimerite, protomerite, and deutomerite) is divided in two zones: ectoplasm and endoplasm. The ectoplasm is clear and does not contain much granular material. In the ectoplasm, the microtubules can be found. The endoplasm is less transparent and contains paraglycogen giving the cells a brown-yellowish color when viewing the cells with a light miscrope. [1] [11] [12]

Life cycle

The lifecycle consists of several stadia: gametocyst - oocyst - sporozoitetrophozoite (chepaline) - gamont (gametocyte, sporadin) – gametocyst – oocyst. The gametocyst and oocysts are the cell structures that can survive outside the host-organism and infect other insects. The cycle starts with the oocysts that leave the body with the feces and are left on plant-material. When other locust than eat the plant with oocysts they will burst open (excystation) under the influence of the digestion of the locust. Eight sporozoites will then be released inside the digestive system of the locust. [1] [13] [14] Orthoptera regurgitate enzymes from the foregut and together with secretions of the salivary glands these enzymes can break down the oocyst cell wall and thus enable the freeing of the sporozoits. The free sporozoits than pass through the peritrophic membrane surrounding the midgut. Once in the ectoperitrophic space they can attach themselves to the epithelial cells of the caeca and midgut. [15] [16] [17]

Two trophozoites attaching to each other to form a gamont 2 trophozoites Gregarina Garnhami.jpg
Two trophozoites attaching to each other to form a gamont

Once attached to a epithelial cell, it grows vegetatively and becomes a trophozoite (also called cephalin or chepalont). After 48 hours, a cell with two structures can be seen: the epimerite, attaching to the host cell and the second part (back) of the cell. After a while, a septum is formed, creating a clear protomerite and deuteromerite. [1] After about eight days the Trophozoite will release itself from the host cell. [1] [18] [19] After release from the epithelial cell, a trophozoit associates with a second one and forms a gamont by forming a circle and fusing together (syzygy). [1] [20] [21] [22] Once no distinction between the two is visible, zygotes are formed. The zygotes are the only diploid lifestage in the lifecycle of G. garnhami. A cyst (oocyst) eventually is formed and the nucleus goes through a meiotic and mitotic division. In the end, eight haploid sporozoits are formed, ready to be released into a new host. [1] [23]

Relationship with their host

Their relationship with their hosts has not been deciphered in full detail, [24] but G. garnhami is generally regarded as a commensal organism that does not harm its host. A typical characteristic is that most eugregarines only have one host during their development. [3] This relationship is generally described as host-specific, but this can also be due to the lack of research on this topic. [25] This host-specificity is set to take place at the level of a specific family of hosts in the case of Orthoptera hosts. [25] [21] Although some studies mention more hosts per species of gregarine. [26] Lifestage specificity has been shown and this is mainly important for holometabolic insects. [27] Due to a lack of genetic information on gregarines it is however difficult to study the host-specificity. The identification of gregarines is often based on external characteristics, but they are very similar making identification difficult. [21] [28] [29] In the past (and as of 2020) identification of gregarines was often based on the host, but this seems not to be an advisable method. [30]

Gregarines visible in midgut of the desert locust Gregarines in midgut locust.png
Gregarines visible in midgut of the desert locust

Gregarina garnhami is mainly found in the caeca and midgut of the desert locust where it attaches itself to the epithelial cells in order to feed. [1] The uptake of food happens through the epimerite, attached to the host cell, after a while also the developed protomerite and deutomerite can take up nutrients. [31] The uptake of nutrients happens through osmosis and pinocytosis (formation of a Cytostome). The nutrients are then stored as paraglycogen or fat. [11] [32] [33] [34] The hundreds of foldings of the cell surface give eugregarines a substantial enlargement of the cell-surface in order to take up more nutrients. [35] More details need to be studied in regard of the nutrient uptake by gregarines, however, it is clear that they do not pierce the host cell to take up the cytoplasm. An apical complex is absent in the trophozoit stage in most eugregarines while it is this complex that is used by archigregarines for the uptake of nutrients by piercing the host cell. [34] [31] [33] [15] Gregarina garnhami stays present as a extracellular organism in the host, not penetrating the cell membrane of the host. [2] The effect of G. garnhami on the host is not terribly severe but it is one of the few gregarines which are pathogenic. Harry 1970 found it to cause weight loss but not molting or feeding inhibition. [36]

Gregarina garnhami could potentially be used for biocontrol of Schistocerca gregaria - adults and nymphs - and may be appropriate for deployment in Nepal. [37] [38]

Related Research Articles

<span class="mw-page-title-main">Apicomplexa</span> Phylum of parasitic alveolates

The Apicomplexa are a large phylum of mainly parasitic alveolates. Most of them possess a unique form of organelle that comprises a type of non-photosynthetic plastid called an apicoplast, and an apical complex structure. The organelle is an adaptation that the apicomplexan applies in penetration of a host cell.

<i>Eimeria</i> Genus of single-celled organisms

Eimeria is a genus of apicomplexan parasites that includes various species capable of causing the disease coccidiosis in animals such as cattle, poultry and smaller ruminants including sheep and goats. Eimeria species are considered to be monoxenous because the life cycle is completed within a single host, and stenoxenous because they tend to be host specific, although a number of exceptions have been identified. Species of this genus infect a wide variety of hosts. Thirty-one species are known to occur in bats (Chiroptera), two in turtles, and 130 named species infect fish. Two species infect seals. Five species infect llamas and alpacas: E. alpacae, E. ivitaensis, E. lamae, E. macusaniensis, and E. punonensis. A number of species infect rodents, including E. couesii, E. kinsellai, E. palustris, E. ojastii and E. oryzomysi. Others infect poultry, rabbits and cattle. For full species list, see below.

<span class="mw-page-title-main">Gregarinasina</span> Subclass of protists

The gregarines are a group of Apicomplexan alveolates, classified as the Gregarinasina or Gregarinia. The large parasites inhabit the intestines of many invertebrates. They are not found in any vertebrates. Gregarines are closely related to both Toxoplasma and Plasmodium, which cause toxoplasmosis and malaria, respectively. Both protists use protein complexes similar to those that are formed by the gregarines for gliding motility and for invading target cells. This makes the gregarines excellent models for studying gliding motility, with the goal of developing treatment options for both toxoplasmosis and malaria. Thousands of different species of gregarine are expected to be found in insects, and 99% of these gregarine species still need to be described. Each insect species can be the host of multiple gregarine species. One of the most-studied gregarines is Gregarina garnhami. In general, gregarines are regarded as a very successful group of parasites, as their hosts are distributed over the entire planet.

<span class="mw-page-title-main">Piroplasmida</span> Order of parasites in phylum Apicomplexa, vertebrate hosts, tick and leech vectors

Piroplasmida is an order of parasites in the phylum Apicomplexa. They divide by binary fission and as sporozoan parasites they possess sexual and asexual phases. They include the tick parasites Babesia and Theileria.

<i>Colpodella</i> Genus of single-celled organisms

Colpodella is a genus of alveolates comprising 5 species, and two further possible species: They share all the synapomorphies of apicomplexans, but are free-living, rather than parasitic. Many members of this genus were previously assigned to a different genus - Spiromonas.

<span class="mw-page-title-main">Apicomplexan life cycle</span> Apicomplexa life cycle

Apicomplexans, a group of intracellular parasites, have life cycle stages that allow them to survive the wide variety of environments they are exposed to during their complex life cycle. Each stage in the life cycle of an apicomplexan organism is typified by a cellular variety with a distinct morphology and biochemistry.

Dactylosoma is a genus of parasitic alveolates of the phylum Apicomplexa.

The genus Schellackia comprises obligate unicellular eukaryotic parasites within the phylum Apicomplexa, and infects numerous species of lizards and amphibians worldwide. Schellackia is transmitted via insect vectors, primarily mites and mosquitoes, which take up the parasite in blood meals. These vectors then subsequently infect reptilian and amphibian which consume the infected insects. The parasites deform erythrocytes of the host into crescents, and can be visualized using a blood smear.

The Archigregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect marine invertebrates — usually annelids, ascidians, hemichordates and sipunculids.

The Neogregarinorida are an order of parasitic alveolates in the phylum Apicomplexa. Species in this order infect insects and are usually found in the fat body, hemolymph, hypodermis, intestine or Malpighian tubules. The most common site of infection is the fat body: many species are pathogenic for their hosts.

Merocystis is a genus in the phylum Apicomplexa.

The Eugregarinorida are the most large and diverse order of gregarines — parasitic protists belonging to the phylum Apicomplexa. Eugregarines are found in marine, freshwater and terrestrial habitats. These species possess large trophozoites that are significantly different in morphology and behavior from the sporozoites. This taxon contains most of the known gregarine species.

The Caulleryellidae are a family of parasites in the phylum Apicomplexa. Species in this family mostly infect dipteran larvae.

A mucron is an attachment organelle found in archigregarines - an order of epicellular parasitic Conoidasida.

Filipodium is a genus of parasites in the phylum Apicomplexa. Species in this genus infect marine invertebrates.

Apicystis bombi is a species of parasitic alveolates in the phylum Apicomplexa. It infects bees, especially bumblebees. It is believed to have a cosmopolitan distribution in bumblebees and a sporadic occurrence in honey bees, and causes disease symptoms in nonresistant bee species.

Aseptatorina is a suborder of parasitic alveolates of the phylum Apicomplexa

Septatorina is a suborder of parasitic alveolates of the phylum Apicomplexa

Stylocephaloidea is a superfamily of parasites of the phylum Apicomplexia.

Nematopsis (Nee-mah-top-cis) is a genus gregarine Apicomplexan of the family Porosporidae. It is an aquatic parasite of crustaceans with a molluscan intermediate host. Nematopsis has been distinguished from the similar genus Porospora by its resistant and encapsulated oocyst. Little molecular biology has been performed on the members of the Nemaptosis and species are described based on molluscan and crustacean hosts as well as oocyst structure. A total of 38 species have been described and are found all over the world.

References

  1. 1 2 3 4 5 6 7 8 9 Canning, Elizabeth U. (1956). "A New Eugregarine of Locusts, Gregarina garnhami n.sp., parasitic in Schistocerca gregaria Forsk". Journal of Protozoology. 3 (2): 50–62. doi:10.1111/j.1550-7408.1956.tb02433.x. ISSN   1550-7408.
  2. 1 2 Valigurová, Andrea; Koudela, Břetislav (August 2008). "Morphological analysis of the cellular interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria". European Journal of Protistology. 44 (3): 197–207. doi:10.1016/j.ejop.2007.11.006. PMID   18304787.
  3. 1 2 Lange, C.E.; Lord, J.C. (2012). Insect Pathology - 2nd Edition (2nd ed.). Elsevier/Academic Press. pp. 367–387. ISBN   9780123849847.
  4. Lipa JJH-CP, Santiago-Alvarez C. 1996. Gregarines (Eugregarinorida: Apicomplexa) in natural populations of Dociostaurus maroccanus, Calliptamus italicus and other Orthoptera. Acta Protozoologica, 35, 49–59.
  5. 1 2 Florent, Isabelle; Chapuis, Marie Pierre; Labat, Amandine; Boisard, Julie; Leménager, Nicolas; Michel, Bruno; Desportes-Livage, Isabelle (2021). "Integrative taxonomy confirms that Gregarina garnhami and G. acridiorum (Apicomplexa, Gregarinidae), parasites of Schistocerca gregaria and Locusta migratoria (Insecta, Orthoptera), are distinct species". Parasite. 28: 12. doi: 10.1051/parasite/2021009 . ISSN   1776-1042. PMC   7901526 . PMID   33620310. CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  6. Vivier, E; Petitprez, A (November 1969). "The outer membrane complex and its development at the time of the formation of daughter cells in Toxoplasma gondii". The Journal of Cell Biology. 43 (2): 329–42. doi:10.1083/jcb.43.2.329. PMC   2107857 . PMID   5344151.
  7. Walker, M. H.; Mackenzie, C.; Bainbridge, S. P.; Orme, C. (1979). "A Study of the Structure and Gliding Movement of Gregarina garnhami". The Journal of Protozoology. 26 (4): 566–574. doi:10.1111/j.1550-7408.1979.tb04197.x. ISSN   1550-7408.
  8. Schrevel, J.; Caigneaux, E.; Gros, D.; Philippe, M. (1 May 1983). "The three cortical membranes of the gregarines. I. Ultrastructural organization of Gregarina blaberae". Journal of Cell Science. 61 (1): 151–174. doi:10.1242/jcs.61.1.151. ISSN   0021-9533. PMID   6411745.
  9. Morrissette, NS; Sibley, LD (March 2002). "Cytoskeleton of apicomplexan parasites". Microbiology and Molecular Biology Reviews. 66 (1): 21–38, table of contents. doi:10.1128/mmbr.66.1.21-38.2002. PMC   120781 . PMID   11875126.
  10. Apicomplexa tolweb.org, Tree of life we project, Jan Šlapeta and Victoria Morin-Adeline
  11. 1 2 Vivier, E. (1968). "L'organisation ultrastructurale corticale de la grégarine Lecudina pellucida; ses rapports avec l'alimentation et la locomotion". The Journal of Protozoology. 15 (2): 230–246. doi:10.1111/j.1550-7408.1968.tb02115.x. ISSN   1550-7408.
  12. Schrével, Joseph (1 January 1994). "Protists: An exceptional source of cell models". Biology of the Cell. 80 (2): 241–256. doi:10.1111/j.1768-322X.1994.tb00935.x. ISSN   0248-4900. S2CID   83963444.
  13. Janardanan, K.P.; Ramachandran, P. (1983). "On a new septate gregarine, Stenoductus polydesmi' sp. n. (Sporozoa: Cephalina) from the Millipede, Polydesmus sp. with observations on host-specificity of gregarines infecting the millipedes in Kerala, India". Acta Protozoologica. 22 (1): 87–94.
  14. Thomas, W. P. (1 January 1965). "A Note on the Life Cycle of Eugregarines Inhabiting the Alimentary Canal of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae)". New Zealand Entomologist. 3 (4): 42–46. doi:10.1080/00779962.1965.9722848. ISSN   0077-9962.
  15. 1 2 Valigurová, Andrea (2008). Comparative morphology of developmental stages of gregarines and cryptosporidia with an emphasis on host-parasite interactions (Thesis). Masaryk University, Faculty of Science.
  16. Chapman, R.F. (1998). The insects : structure and function (4th ed.). Cambridge University Press. p. 788. ISBN   9780511818202.
  17. Clopton, Richard E.; Lucarotti, Christopher J. (September 1997). "Leidyana canadensis n. sp. (Apicomplexa: Eugregarinida) from Larval Eastern Hemlock Looper, Lambdina fiscellaria fiscellaria (Lepidoptera: Geometridae)". The Journal of Eukaryotic Microbiology. 44 (5): 383–387. doi:10.1111/j.1550-7408.1997.tb05712.x. S2CID   83708914.
  18. Corbel, J.C. (1964). "Infestations experimentales de Locusta migratoria L. (insect, orthoptère) par Gregarina garnhami Canning (sporozoaire Gregarinoporphe): relation entre le cycle de l'hôte et celui du parasite". Comptes rendus des séances de l'Académie des Sciences. 259: 207–210.
  19. Valigurová, A.; Michalková, V.; Koudela, B. (2009). "Eugregarine trophozoite detachment from the host epithelium via epimeriet retraction: Fiction or fact?". International Journal for Parasitology. 39 (11): 1235–1242. doi:10.1016/j.ijpara.2009.04.009. PMID   19460380.
  20. Smyth, D.; Wakelin, J.D. (1994). Introduction to animal parasitology (3rd ed.). Cambridge University Press. pp. 88–108. ISBN   9780521428118.
  21. 1 2 3 Clopton, Richard E. (2009). "Phylogenetic Relationships, Evolution, and Systematic Revision of the Septate Gregarines (Apicomplexa: Eugregarinorida: Septatorina)". Comparative Parasitology. 76 (2): 167–190. doi:10.1654/4388.1. ISSN   1525-2647. S2CID   12944487.
  22. Toso, MA; Omoto, CK (June 2007). "Ultrastructure of the Gregarina niphandrodes nucleus through stages from unassociated trophozoites to gamonts in syzygy and the syzygy junction". The Journal of Parasitology. 93 (3): 479–84. doi:10.1645/GE-1028R1.1. PMID   17626337. S2CID   8444394.
  23. Harry, Owen G. (6 April 2009). "Studies on infection and reinfection by eugregarines". Parasitology. 63 (2): 213–223. doi:10.1017/S0031182000079531. S2CID   86068994.
  24. Chapman, R.F.; Joern, A. (1990). Biology of grasshoppers. Wiley. p. 563. ISBN   978-0-471-60901-8.
  25. 1 2 Clopton, RE; Gold, RE (May 1996). "Host Specificity of Gregarina blattarum von Siebold, 1839 (Apicomplexa: Eugregarinida) among Five Species of Domiciliary Cockroaches". Journal of Invertebrate Pathology. 67 (3): 219–23. doi:10.1006/jipa.1996.0036. PMID   8812602.
  26. Corbel, J.C. (1973). "Observations complémentaires sur la repartition géographique et al spécificité parasitaire de Gregarina acridiorum Léger, 1893 (eugregarina, gregarinidae)". Acrida. 2: 69–75.
  27. Clopton, RE; Janovy J, Jr; Percival, TJ (April 1992). "Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor". The Journal of Parasitology. 78 (2): 334–7. doi:10.2307/3283484. JSTOR   3283484. PMID   1556647. S2CID   333786.
  28. Clopton, R.E. (2000). An illustrated guide to the protozoa : organisms traditionally referred to as protozoa, or newly discovered groups (2nd ed.). Society of Protozoologists. pp. 205–288. ISBN   1891276239.
  29. Lange, CE; Wittenstein, E (January 2002). "The life cycle of Gregarina ronderosi n. sp. (Apicomplexa: Gregarinidae) in the Argentine grasshopper Dichroplus elongatus (Orthoptera: Acrididae)". Journal of Invertebrate Pathology. 79 (1): 27–36. doi:10.1016/S0022-2011(02)00008-3. PMID   12054784.
  30. Cielocha, Joanna J.; Cook, Tamara J.; Clopton, Richard E. (January 2011). "Host Utilization and Distribution of Nubenocephalid Gregarines (Eugregarinorida: Actinocephalidae) Parasitizing Argia spp. (Odonata: Zygoptera) in the Central United States". Comparative Parasitology. 78 (1): 152–160. doi:10.1654/4459.1. S2CID   85731261.
  31. 1 2 Kamm, Minnie Elizabeth Watson (January 1916). "Studies on gregarines, including descriptions of twenty-one new species and a synopsis of the eugregarine records from the Myriapoda, Coleoptera and Orthoptera of the world". Illinois Biological Monographs. University of Illinois. II (3).
  32. Walsh, R. D.; Callaway, C. S. (1969). "The Fine Structure of the Gregarine lankesteria culicis Parasitic in the Yellow Fever Mosquito Aedes aegypti". The Journal of Protozoology. 16 (3): 536–545. doi:10.1111/j.1550-7408.1969.tb02313.x. ISSN   1550-7408. PMID   4981008.
  33. 1 2 MacMillan, W. G. (February 1973). "Gregarine attachment organelles — structure and permeability of an interspecific cell junction". Parasitology. 66 (1): 207–214. doi:10.1017/S0031182000044553. ISSN   1469-8161. S2CID   84531090.
  34. 1 2 Leander, Brian S. (1 July 2006). "Ultrastructure of the archigregarine Selenidium vivax (Apicomplexa) – A dynamic parasite of sipunculid worms (host: Phascolosoma agassizii)". Marine Biology Research. 2 (3): 178–190. doi:10.1080/17451000600724395. ISSN   1745-1000. S2CID   8545107.
  35. Leander, Brian S. (2007). "Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida)". Zoologica Scripta. 36 (2): 213–227. doi:10.1111/j.1463-6409.2007.00272.x. ISSN   1463-6409. S2CID   85645881.
  36. Henry, J. E. (1981). "Natural and Applied Control of Insects by Protozoa". Annual Review of Entomology . Annual Reviews. 26 (1): 49–73. doi:10.1146/annurev.en.26.010181.000405. ISSN   0066-4170. S2CID   86049883.
  37. "Schistocerca gregaria (desert locust)". Invasive Species Compendium (ISC). CABI (Centre for Agriculture and Bioscience International).
  38. Pandey, Meena; Suwal, Binita; Kayastha, Preeti; Suwal, Gresha; Khanal, Dipak (2021). "Desert locust invasion in Nepal and possible management strategies: A review". Journal of Agriculture and Food Research . Elsevier. 5: 100166. doi: 10.1016/j.jafr.2021.100166 . ISSN   2666-1543.

Further reading