Gregory H. Robinson | |
---|---|
Born | Gregory Heagward Robinson |
Alma mater | Jacksonville State University B.S. in Chemistry (1980) The University of Alabama Ph.D. in Chemistry (1984) |
Awards |
|
Scientific career | |
Institutions | Clemson University (1984-1995) The University of Georgia (1995-now) |
Thesis | A synthetic and structural investigation of the interactions between aluminum alkyls and macrocyclic polyethers (1984) |
Website | www |
Gregory H. Robinson FRSC is an American synthetic inorganic chemist and a Foundation Distinguished Professor of Chemistry at the University of Georgia. [1] Robinson's research focuses on unusual bonding motifs and low oxidation state chemistry of molecules containing main group elements such as boron, gallium, germanium, phosphorus, magnesium, and silicon. He has published over 150 research articles, and was elected to the National Academy of Sciences in 2021. [2] [3]
Robinson received his B.S. from Jacksonville State University (1980) and his Ph.D. from the University of Alabama (1984). [1] [4] He joined the faculty at the University of Georgia in 1995.
Robinson has made a number of seminal discoveries in the field of synthetic inorganic chemistry. Many of these discoveries have concerned unusual molecules involving the main group elements.
Aromatic molecules constitute a particularly important class of organic compounds. In general, aromatic molecules contain planar carbon-based cyclic ring systems. In addition, aromatic molecules also possess enhanced stability due to electron delocalization. The iconic aromatic molecule is benzene, C6H6. Inherent in the traditional concept of aromaticity, is the fact that metals were considered incapable of displaying traditional aromatic behavior. Robinson discovered that the main group metal gallium, if properly constrained, could exhibit aromatic behavior. [5] Robinson's group prepared a compound that contained a three-membered ring of gallium atoms in a dianion, [R3Ga3]2- (R = large organic ligand). This [R3Ga3]2- dianion was found to be isoelectronic with the aromatic triphenylcyclopropenium cation, [Ph3C3]+. Thus, the concept of “metalloaromaticity”, the proposition that a metallic ring system could display traditional aromatic behavior historically restricted to carbon ring systems (i.e., benzene), was experimentally realized. [6]
The chemistry of boron, the fifth element on the Periodic Table, is as rich as it is varied. However, boron had not been shown to engage in robust multiple bonding like its periodic neighbor carbon. Robinson utilized a class of organic bases known as carbenes (L:) to prepare the first neutral compound containing a boron-boron double bond, the first diborene, with the synthesis and molecular structure of L:(H)B=B(H):L. [7] [8] The chemistry of molecules containing boron-boron multiple bonds is now a thriving area of research.
Robinson utilized a similar technique to prepare a highly unusual compound containing a silicon-silicon double bond, with both silicon atoms residing in the formal oxidation state of zero, L:Si=Si:L. Essentially, this compound represented a means to stabilize the highly reactive diatomic allotropes of silicon at room temperature. Since this discovery, several other molecules have subsequently been prepared including diphosphorus. [9] [10] [11]
Robinson has published over 150 research articles, including:
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge.
In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.
A silabenzene is a heteroaromatic compound containing one or more silicon atoms instead of carbon atoms in benzene. A single substitution gives silabenzene proper; additional substitutions give a disilabenzene, trisilabenzene, etc.
Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.
Cyclodecapentaene or [10]annulene is an annulene with molecular formula C10H10. This organic compound is a conjugated 10 pi electron cyclic system and according to Huckel's rule it should display aromaticity. It is not aromatic, however, because various types of ring strain destabilize an all-planar geometry.
A persistent carbene is an organic molecule whose natural resonance structure has a carbon atom with incomplete octet, but does not exhibit the tremendous instability typically associated with such moieties. The best-known examples and by far largest subgroup are the N-heterocyclic carbenes (NHC), in which nitrogen atoms flank the formal carbene.
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.
Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.
Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage.
Diphosphorus is an inorganic chemical with the chemical formula P
2. Unlike nitrogen, its lighter pnictogen neighbor which forms a stable N2 molecule with a nitrogen to nitrogen triple bond, phosphorus prefers a tetrahedral form P4 because P-P pi-bonds are high in energy. Diphosphorus is, therefore, very reactive with a bond-dissociation energy (117 kcal/mol or 490 kJ/mol) half that of dinitrogen. The bond distance has been measured at 1.8934 Å.
Hexazine is a hypothetical allotrope of nitrogen composed of 6 nitrogen atoms arranged in a ring-like structure analogous to that of benzene. As a neutrally charged species, it would be the final member of the azabenzene (azine) series, in which all of the methine groups of the benzene molecule have been replaced with nitrogen atoms. The two last members of this series, hexazine and pentazine, have not been observed, although all other members of the azine series have.
Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.
Diborane(2), also known as diborene, is an inorganic compound with the formula B2H2. The number 2 in diborane(2) indicates the number of hydrogen atoms bonded to the boron complex. There are other forms of diborane with different numbers of hydrogen atoms, including diborane(4) and diborane(6).
A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic moiety and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.
Silylones are a class of zero-valent monatomic silicon complexes, characterized as having two lone pairs and two donor-acceptor ligand interactions stabilizing a silicon(0) center. Synthesis of silylones generally involves the use of sterically bulky carbenes to stabilize highly reactive Si(0) centers. For this reason, silylones are sometimes referred to siladicarbenes. To date, silylones have been synthesized with cyclic alkyl amino carbenes (cAAC) and bidentate N-heterocyclic carbenes (bis-NHC). They are capable of reactions with a variety of substrates, including chalcogens and carbon dioxide.
Alexander I. Boldyrev was a Russian-American computational chemist and R. Gaurth Hansen Professor at Utah State University. Professor Boldyrev is known for his pioneering works on superhalogens, superalkalis, tetracoordinated planar carbon, inorganic double helix, boron and aluminum clusters, and chemical bonding theory, especially aromaticity/antiaromaticity in all-metal structures, and development of the Adaptive Natural Density Partitioning (AdNDP) method.
Borepins are a class of boron-containing heterocycles used in main group chemistry. They consist of a seven-membered unsaturated ring with a tricoordinate boron in it. Simple borepins are analogues of cycloheptatriene, which is a seven-membered ring containing three carbon-carbon double bonds, each of which contributes 2π electrons for a total of 6π electrons. Unlike other seven-membered systems such as silepins and phosphepins, boron has a vacant p-orbital that can interact with the π and π* orbitals of the cycloheptatriene. This leads to an isoelectronic state akin to that of the tropylium cation, aromatizing the borepin while also allowing it to act as a Lewis acid. The aromaticity of borepin is relatively weak compared to traditional aromatics such as benzene or even cycloheptatriene, which has led to the synthesis of many fused, π-conjugated borepin systems over the years. Simple and complex borepins have been extensively studied more recently due to their high fluorescence and potential applications in technologies like organic light-emitting diodes (OLEDs) and photovoltaic cells.
Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains less developed relative to the chemistry of other main-group elements, because Be compounds are toxic and few applications have been found.
Robert J. Gilliard, Jr. is an American chemist and researcher who is the Novartis Associate Professor of Chemistry at Massachusetts Institute of Technology. His research involves the synthesis of molecules for energy storage, molecular materials, and main-group element mediated bond activation. He is a member of the editorial advisory board at Inorganic Chemistry, Chemical Communications, and Angewandte Chemie, among other scientific journals.
Tris(cyclooctatetraene)triiron or Fe3(COT)3, also referred to as the Lavallo-Grubbs compound (after its discoverers) is an organoiron compound with the formula Fe3(C8H8)3. It is a pyrophoric, black crystalline solid, which is insoluble in common organic solvents.The compound represents a rare example of a hydrocarbon analogue of the well-known Triiron dodecacarbonyl (Fe3(CO)12), originally prepared by Dewar and Jones in the early 20th century.
{{cite journal}}
: CS1 maint: numeric names: authors list (link)