Gregory S. Girolami

Last updated

Gregory S. Girolami [1] (born October 16, 1956)[ citation needed ] is the William H. and Janet G. Lycan Professor of Chemistry at the University of Illinois at Urbana-Champaign. His research focuses on the synthesis, properties, and reactivity of new inorganic, organometallic, and solid state species. Girolami has been elected a fellow of the American Association for the Advancement of Science, [2] the Royal Society of Chemistry, [3] and the American Chemical Society. [4]

Contents

Gregory Scott Girolami
Born1956 (age 6667)
Alma mater University of Texas at Austin B.S.
University of California at Berkeley Ph.D. (1981)
Scientific career
FieldsChemistry
Institutions University of Illinois at Urbana–Champaign
Thesis Alkyl and Lewis-Base Derivatives of Compounds which contain Multiple Metal-Metal Bonds  (1981)
Doctoral advisor Richard A. Andersen
Other academic advisors Geoffrey Wilkinson
Doctoral students Cheon Jinwoo, Wenbin Lin, [5] Julia L. Brumaghim, [6] Timothy H. Warren [7]
Website faculty.scs.illinois.edu/girolami/

Early life and education

He was born in 1956 [8] in Honolulu, Hawaii, and grew up in California, Mexico, and Missouri.[ citation needed ] He started college at the age of 16,[ citation needed ] and four years later received B.S. degrees both in chemistry and in physics from the University of Texas at Austin. [9] He obtained his Ph.D. in 1981 from the University of California, Berkeley with Prof. Richard A. Andersen. Girolami's doctoral research centered on the chemistry of quadruply-bonded dinuclear transition metal complexes. [10] [11] [12] Thereafter, he was a NATO postdoctoral fellow with Sir Geoffrey Wilkinson at the Imperial College of Science and Technology, and his work there focused on the synthesis and chemistry of first-row transition metal-alkyl complexes. [13] [14] [15]

Independent career

Girolami joined the faculty of the University of Illinois at Urbana-Champaign in 1983. He has served as Head of the Chemistry Department twice, first from 2000 until 2005 and again from 2013 to 2016.

He is the author of several textbooks, including X-ray Crystallography [9] and Synthesis and Technique in Inorganic Chemistry. [16] He was the co-editor of volume 36 of Inorganic Syntheses. [17]

Girolami is also co-founder of a university spin-off company, Tiptek LLC, which manufactures ultrasharp probe tips for use in scanning tunneling microscopy and for fault diagnosis and testing of integrated circuits. The company has patented its field-directed sputter sharpening (FDSS) technology, which was originally developed in the laboratories of Girolami and fellow UIUC Professor Joseph Lyding. [18]

Research

To date, Girolami's independent research career has encompassed five major themes: mechanistic studies of organometallic reactions such as the polymerization of alkenes and the activation of saturated alkanes, the chemical vapor deposition of thin films from designed molecular precursors, the construction and study of molecular analogs of the photosynthetic reaction center, actinide chemistry, and the synthesis of new molecule-based magnetic materials. His research approach emphasizes the synthesis of new inorganic and organometallic compounds and materials, investigations of their mechanisms of formation, and measurements and interpretations of their physical properties.

Organometallic chemistry

Girolami's early work focused on the synthesis of transition metal compounds with metal-hydrogen and metal-carbon bonds, especially those possessing unusual electronic structures. In 1989, Girolami and Morse showed that [Zr(CH
3
)
6
]2−
was of trigonal prismatic molecular geometry as indicated by X-ray crystallography. [19] This rare molecular geometry was attributed to second-order Jahn-Teller distortions in this d0 metal complex. Girolami's group accurately predicted that other d0 ML6 species such as [Nb(CH
3
)
6
]
, [Ta(CH
3
)
6
]
, and W(CH3)6 would also prove to have trigonal prismatic geometry. [19] Girolami also discovered the first titanium alkyl/alkene complex in 1993, which models the key intermediate in Ziegler-Natta catalysis. [20] Later model studies of C-H, B-H, and Si-H activation by transition metal complexes led to his current work on approaches to the isolation of stable alkane complexes.

Chemical vapor deposition

In the mid-1980s Girolami began research on the chemical vapor deposition (CVD) of thin films, especially of phases containing transition metals. Girolami studied the chemical design of new CVD precursors. He investigated copper(I) compounds for copper CVD, [21] an approach that is now a key fabrication step for integrated circuits. [22] His mechanistic studies of CVD processes involved transition metals, and these efforts have recently resulted in the development of low-temperature CVD to achieve the deposition of conformal thin films, in work carried out in collaboration with Professor John Abelson of Illinois' Department of Materials Science and Engineering. [23] Most recently, he discovered a new class of highly volatile CVD precursors containing the aminodiboranate ligand. [24] [25]

Molecular analogs of the photosynthetic reaction center

In a now-concluded project, Girolami studied the chemistry and photophysics of bis(porphyrinate) metal sandwich complexes in collaboration with Illinois Professor of Chemistry Kenneth S. Suslick. These complexes were proposed to mimic the conversion of light to chemical energy in photosynthesis. Girolami's group synthesized bis(porphyrin) complexes of thorium, uranium, [26] zirconium, [27] and hafnium, and showed that these complexes displayed photophysical properties similar to those of the “special pair”, a chlorophyll dimer present in the photosystem I reaction center. [28]

Actinide chemistry

Overlapping with Girolami's interest in bis(porphryin) complexes that mimic the photosynthetic reaction center, the Girolami group has also studied actinide chemistry. [29]

Magnetic materials

In the mid-1990s, Girolami began an investigation of the synthesis of new magnetic solids via a building block approach, publishing in Science in 1995. [30] Girolami also reported metal-substituted analogs of Prussian blue that have magnetic ordering temperatures above 100 °C. [31]

Awards

Girolami has received numerous awards for his research, including the Office of Naval Research Young Investigator Award, a Sloan Foundation Fellowship, a Dreyfus Teacher-Scholar Award, and a University Scholar Award. [32] He has been honored by UIUC with a Campus Award for Excellence in Graduate and Professional Teaching, for the introduction of a graduate class in inorganic chemistry covering group theory and electronic correlation methods. [33] [34]

Related Research Articles

<span class="mw-page-title-main">Chromium hexacarbonyl</span> Chemical compound

Chromium hexacarbonyl (IUPAC name: hexacarbonylchromium) is a chromium(0) organometallic compound with the formula Cr(CO)6. It is homoleptic complex, which means that all the ligands are identical. It is a white, air-stable solid with a high vapor pressure.

<span class="mw-page-title-main">Titanium(II) chloride</span> Chemical compound

Titanium(II) chloride is the chemical compound with the formula TiCl2. The black solid has been studied only moderately, probably because of its high reactivity. Ti(II) is a strong reducing agent: it has a high affinity for oxygen and reacts irreversibly with water to produce H2. The usual preparation is the thermal disproportionation of TiCl3 at 500 °C. The reaction is driven by the loss of volatile TiCl4:

The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the metal catalyst, though nickel is sometimes used. A variety of nickel catalysts in either Ni0 or NiII oxidation state can be employed in Negishi cross couplings such as Ni(PPh3)4, Ni(acac)2, Ni(COD)2 etc.

<span class="mw-page-title-main">Dimanganese decacarbonyl</span> Chemical compound

Dimanganese decacarbonyl, which has the chemical formula Mn2(CO)10, is a binary bimetallic carbonyl complex centered around the first row transition metal manganese. The first reported synthesis of Mn2(CO)10 was in 1954 at Linde Air Products Company and was performed by Brimm, Lynch, and Sesny. Their hypothesis about, and synthesis of, dimanganese decacarbonyl was fundamentally guided by the previously known dirhenium decacarbonyl (Re2(CO)10), the heavy atom analogue of Mn2(CO)10. Since its first synthesis, Mn2(CO)10 has been use sparingly as a reagent in the synthesis of other chemical species, but has found the most use as a simple system on which to study fundamental chemical and physical phenomena, most notably, the metal-metal bond. Dimanganese decacarbonyl is also used as a classic example to reinforce fundamental topics in organometallic chemistry like d-electron count, the 18-electron rule, oxidation state, valency, and the isolobal analogy.

<span class="mw-page-title-main">Liebeskind–Srogl coupling</span>

The Liebeskind–Srogl coupling reaction is an organic reaction forming a new carbon–carbon bond from a thioester and a boronic acid using a metal catalyst. It is a cross-coupling reaction. This reaction was invented by and named after Jiri Srogl from the Academy of Sciences, Czech Republic, and Lanny S. Liebeskind from Emory University, Atlanta, Georgia, USA. There are three generations of this reaction, with the first generation shown below. The original transformation used catalytic Pd(0), TFP = tris(2-furyl)phosphine as an additional ligand and stoichiometric CuTC = copper(I) thiophene-2-carboxylate as a co-metal catalyst. The overall reaction scheme is shown below.

<span class="mw-page-title-main">Cyclopentadienyliron dicarbonyl dimer</span> Chemical compound

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(η5-C5H5)Fe(CO)2]2, often abbreviated to Cp2Fe2(CO)4, [CpFe(CO)2]2 or even Fp2, with the colloquial name "fip dimer". It is a dark reddish-purple crystalline solid, which is readily soluble in moderately polar organic solvents such as chloroform and pyridine, but less soluble in carbon tetrachloride and carbon disulfide. Cp2Fe2(CO)4 is insoluble in but stable toward water. Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material for accessing other Fp (CpFe(CO)2) derivatives (described below).

A metal carbido complex is a coordination complex that contains a carbon atom as a ligand. They are analogous to metal nitrido complexes. Carbido complexes are a molecular subclass of carbides, which are prevalent in organometallic and inorganic chemistry. Carbido complexes represent models for intermediates in Fischer–Tropsch synthesis, olefin metathesis, and related catalytic industrial processes. Ruthenium-based carbido complexes are by far the most synthesized and characterized to date. Although, complexes containing chromium, gold, iron, nickel, molybdenum, osmium, rhenium, and tungsten cores are also known. Mixed-metal carbides are also known.

<span class="mw-page-title-main">Transition metal alkyl complexes</span> Coordination complex

Transition metal alkyl complexes are coordination complexes that contain a bond between a transition metal and an alkyl ligand. Such complexes are not only pervasive but are of practical and theoretical interest.

<span class="mw-page-title-main">Organotantalum chemistry</span> Chemistry of compounds containing a carbon-to-tantalum bond

Organotantalum chemistry is the chemistry of chemical compounds containing a carbon-to-tantalum chemical bond. A wide variety of compound have been reported, initially with cyclopentadienyl and CO ligands. Oxidation states vary from Ta(V) to Ta(-I).

The Mukaiyama hydration is an organic reaction involving formal addition of an equivalent of water across an olefin by the action of catalytic bis(acetylacetonato)cobalt(II) complex, phenylsilane and atmospheric oxygen to produce an alcohol with Markovnikov selectivity.

Parisa Mehrkhodavandi is a Canadian chemist and Professor of Chemistry at the University of British Columbia (UBC). Her research focuses on the design of new catalysts that can effect polymerization of sustainably sourced or biodegradable polymers.

Clark Landis is an American chemist, whose research focuses on organic and inorganic chemistry. He is currently a Professor of Chemistry at the University of Wisconsin–Madison. He was awarded the ACS Award in Organometallic Chemistry in 2010, and is a fellow of the American Chemical Society and the American Association for the Advancement of Science.

Christopher "Kit" Colin Cummins is an American chemist, currently the Henry Dreyfus Professor at the Massachusetts Institute of Technology. He has made contributions to the coordination chemistry of transition metal nitrides, phosphides, and carbides.

Jenny Yue-fon Yang is an American chemist. She is a Professor of chemistry at the University of California, Irvine where she leads a research group focused on inorganic chemistry, catalysis, and solar fuels.

<span class="mw-page-title-main">Lanthanocene</span>

A lanthanocene is a type of metallocene compound that contains an element from the lanthanide series. The most common lanthanocene complexes contain two cyclopentadienyl anions and an X type ligand, usually hydride or alkyl ligand.

Jonas C. Peters is the Bren Professor of Chemistry at the California Institute of Technology and Director of the Resnick Sustainability Institute. He has contributed to the development of catalysts and photocatalysts relevant to small molecule activation.

T.V. (Babu) RajanBabu is an organic chemist who holds the position of Distinguished Professor of Chemistry in the College of Arts and Sciences at the Ohio State University. His laboratory traditionally focuses on developing transition metal-catalyzed reactions. RajanBabu is known for helping develop the Nugent-RajanBabu reagent, a chemical reagent used in synthetic organic chemistry as a single electron reductant.

Suzanne Cathleen Bart an American chemist who is a professor of inorganic chemistry at Purdue University. Her group's research focuses on actinide organometallic chemistry, and especially the characterization of low-valent organouranium complexes, actinide complexes with redox-active ligands, and discovery of new reactions that utilize these compounds. Bart's research has applications in the development of carbon-neutral fuel sources and the remediation of polluted sites.

<span class="mw-page-title-main">Organoberyllium chemistry</span> Organoberyllium Complex in Main Group Chemistry

Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains understudied, relative to the chemistry of other main-group elements, because although metallic beryllium is relatively unreactive, its dust causes berylliosis and compounds are toxic. Organoberyllium compounds are typically prepared by transmetallation or alkylation of beryllium chloride.

A molecular electron-reservoir complex is one of a class of redox-active systems which can store and transfer electrons stoichiometrically or catalytically without decomposition. The concept of electron-reservoir complexes was introduced by the work of French chemist, Didier Astruc. From Astruc's discoveries, a whole family of thermally stable, neutral, 19-electron iron(I) organometallic complexes were isolated and characterized, and found to have applications in redox catalysis and electrocatalysis. The following page is a reflection of the prototypal electron-reservoir complexes discovered by Didier Astruc.

References

  1. "Link to Dr. Girolami's webpage at the Department of Chemistry at the University of Illinois at Urbana-Champaign".
  2. Kloeppel, James E. "Eleven professors at Illinois elected as 2007 AAAS Fellows". news.illinois.edu. Retrieved 2021-06-01.
  3. "Greetings from the Department Head | Chemistry at Illinois". chemistry.illinois.edu. Retrieved 2021-06-01.
  4. "2013 ACS Fellows". 2020-09-23. Archived from the original on 2020-09-23. Retrieved 2021-06-01.
  5. "Wenbin Lin CV (2018)" (PDF).
  6. chemistry.sites.clemson.edu https://chemistry.sites.clemson.edu/brumaghimgroup/boss.html . Retrieved 2021-05-19.{{cite web}}: Missing or empty |title= (help)
  7. "Tim Warren". The Warren Group. Retrieved 2021-05-19.
  8. "Girolami, Gregory S. 1956-".
  9. 1 2 "X-Ray Crystallography, by Gregory S. Girolami, published by University Science Books". www.uscibooks.com. Retrieved 2021-05-31.
  10. Girolami, Gregory S.; Mainz, Vera V.; Andersen, Richard A. (1980-04-01). "Coordination complexes of tetrakis(trifluoroacetato)dimolybdenum. A solution proton, fluorine-19, and phosphorus-31 nuclear magnetic resonance and infrared spectroscopic study". Inorganic Chemistry. 19 (4): 805–810. doi:10.1021/ic50206a004. ISSN   0020-1669.
  11. Girolami, Gregory S.; Andersen, Richard A. (1981-07-01). "Reaction of binuclear carboxylate complexes of molybdenum, rhenium, ruthenium, and rhodium with tert-butyl isocyanide: metal-metal bond cleavage vs. bond retention". Inorganic Chemistry. 20 (7): 2040–2044. doi:10.1021/ic50221a022. ISSN   0020-1669.
  12. Girolami, Gregory S.; Mainz, Vera V.; Andersen, Richard A.; Vollmer, Sara H.; Day, Victor W. (1981-07-01). "Quadruply bonded tetramethyltetrakis(trialkylphosphine)dimolybdenum compounds: phosphine exchange kinetics, acetone formation with carbon monoxide and crystal structure of Mo2Me4(PMe3)4". Journal of the American Chemical Society. 103 (13): 3953–3955. doi:10.1021/ja00403a069. ISSN   0002-7863.
  13. Girolami, Gregory S.; Salt, Julian E.; Wilkinson, Geoffrey; Thornton-Pett, Mark; Hursthouse, Michael B. (1983-09-01). "Alkyl, hydride, and dinitrogen 1,2-bis(dimethylphosphino)ethane complexes of chromium. Crystal structures of Me2Cr(dmpe)2, CrH4(dmpe)2, and Cr(N2)2(dmpe)2". Journal of the American Chemical Society. 105 (18): 5954–5956. doi:10.1021/ja00356a060. ISSN   0002-7863.
  14. Girolami, Gregory S.; Wilkinson, Geoffrey; Thornton-Pett, Mark; Hursthouse, Michael B. (1983-10-01). "Hydrido, alkyl, and ethylene 1,2-bis(dimethylphosphino)ethane complexes of manganese and the crystal structures of MnBr2(dmpe)2, [Mn(AlH4)(dmpe)2]2 and MnMe2(dmpe)2". Journal of the American Chemical Society. 105 (22): 6752–6753. doi:10.1021/ja00360a054. ISSN   0002-7863.
  15. Girolami, Gregory S.; Wilkinson, Geoffrey; Galas, Anita M. R.; Thornton-Pett, Mark; Hursthouse, Michael B. (1985-01-01). "Synthesis and properties of the divalent 1,2-bis(dimethylphosphino)ethane (dmpe) complexes MCl2(dmpe)2 and MMe2(dmpe)2(M = Ti, V, Cr, Mn, or Fe). X-Ray crystal structures of MCl2(dmpe)2(M = Ti, V, or Cr), MnBr2(dmpe)2, TiMe1.3Cl0.7(dmpe)2, and CrMe2(dmpe)2". Journal of the Chemical Society, Dalton Transactions (7): 1339–1348. doi:10.1039/DT9850001339. ISSN   1364-5447.
  16. "Synthesis and Technique in Inorganic Chemistry, A Laboratory Manual, Gregory S. Girolami, Thomas B. Rauchfuss, Robert J. Angelici". www.uscibooks.com. Retrieved 2021-05-31.
  17. "Inorganic Syntheses, Volume 36 | Wiley". Wiley.com. Retrieved 2021-05-31.
  18. Schmucker, S. W.; Kumar, N.; Abelson, J. R.; Daly, S. R.; Girolami, G. S.; Bischof, M. R.; Jaeger, D. L.; Reidy, R. F.; Gorman, B. P.; Alexander, J.; Ballard, J. B. (2012-07-03). "Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography". Nature Communications. 3 (1): 935. Bibcode:2012NatCo...3..935S. doi: 10.1038/ncomms1907 . ISSN   2041-1723. PMID   22760634.
  19. 1 2 Morse, P. M.; Girolami, G. S. (1989). "Are d0 ML6 complexes always octahedral? The X-ray structure of trigonal-prismatic [Li(tmed)]2[ZrMe6]". J. Am. Chem. Soc. 111 (11): 4114. doi:10.1021/ja00193a061.
  20. Spencer, Michael D.; Morse, Paige M.; Wilson, Scott R.; Girolami, Gregory S. (1993-03-01). "Preparation, catalytic reactivity, and x-ray crystal structure of the first Group 4 alkyl/alkene complexes. The first structural models of the key Ziegler-Natta catalytic intermediate". Journal of the American Chemical Society. 115 (5): 2057–2059. doi:10.1021/ja00058a073. ISSN   0002-7863.
  21. Girolami, Gregory S.; Jeffries, Patrick M.; Dubois, Lawrence H. (1993). "Mechanistic studies of copper thin-film growth from CuI and CuII .beta.-diketonates". Journal of the American Chemical Society. 115 (3): 1015–1024. doi:10.1021/ja00056a028. ISSN   0002-7863.
  22. Gordon, Peter G.; Kurek, Agnieszka; Barry, Seán T. (2014-12-09). "Trends in Copper Precursor Development for CVD and ALD Applications". ECS Journal of Solid State Science and Technology. 4 (1): N3188–N3197. doi: 10.1149/2.0261501jss . ISSN   2162-8769. S2CID   97668427.
  23. Abelson, John R.; Girolami, Gregory S. (2020-04-09). "New strategies for conformal, superconformal, and ultrasmooth films by low temperature chemical vapor deposition". Journal of Vacuum Science & Technology A. 38 (3): 030802. Bibcode:2020JVSTA..38c0802A. doi: 10.1116/6.0000035 . ISSN   0734-2101.
  24. Daly, Scott R.; Kim, Do Young; Yang, Yu; Abelson, John R.; Girolami, Gregory S. (2010-02-24). "Lanthanide N,N-Dimethylaminodiboranates: Highly Volatile Precursors for the Deposition of Lanthanide-Containing Thin Films". Journal of the American Chemical Society. 132 (7): 2106–2107. doi:10.1021/ja9098005. ISSN   0002-7863. PMID   20108908.
  25. Daly, Scott R.; Kim, Do Young; Girolami, Gregory S. (2012-07-02). "Lanthanide N,N-Dimethylaminodiboranates as a New Class of Highly Volatile Chemical Vapor Deposition Precursors". Inorganic Chemistry. 51 (13): 7050–7065. doi:10.1021/ic201852j. ISSN   0020-1669. PMID   22686567.
  26. Girolami, Gregory S.; Gorlin, Philip A.; Milam, Stanley N.; Suslick, Kenneth S.; Wilson, Scott R. (1994-06-01). "Bis(porphyrin)actinide Complexes and Their Radical Cations and Dications". Journal of Coordination Chemistry. 32 (1–3): 173–212. doi:10.1080/00958979408024247. ISSN   0095-8972.
  27. Girolami, Gregory S.; Hein, Christopher L.; Suslick, Kenneth S. (1996). "A Zirconium Bis(porphyrinate) Sandwich Complex with an Appended Quinone". Angewandte Chemie International Edition in English. 35 (11): 1223–1225. doi:10.1002/anie.199612231. ISSN   1521-3773.
  28. Girolami, Gregory S.; Gorlin, Philip A.; Suslick, Kenneth S. (1994-02-01). "Electronically asymmetric bis(porphyrin) sandwich complexes". Inorganic Chemistry. 33 (4): 626–627. doi:10.1021/ic00082a002. ISSN   0020-1669.
  29. Bilsel, Osman; Rodriguez, Juan; Milam, Stanley N.; Gorlin, Philip A.; Girolami, Gregory S.; Suslick, Kenneth S.; Holten, Dewey (1992-07-01). "Electronic states and optical properties of porphyrins in van der Waals contact: thorium(IV) sandwich complexes". Journal of the American Chemical Society. 114 (16): 6528–6538. doi:10.1021/ja00042a037. ISSN   0002-7863.
  30. Entley, William R.; Girolami, Gregory S. (1995-04-21). "High-Temperature Molecular Magnets Based on Cyanovanadate Building Blocks: Spontaneous Magnetization at 230 K". Science. 268 (5209): 397–400. Bibcode:1995Sci...268..397E. doi:10.1126/science.268.5209.397. ISSN   0036-8075. PMID   17746547. S2CID   10784183.
  31. Holmes, Stephen M.; Girolami, Gregory S. (1999-06-01). "Sol−Gel Synthesis of KVII[CrIII(CN)6]·2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C". Journal of the American Chemical Society. 121 (23): 5593–5594. doi:10.1021/ja990946c. ISSN   0002-7863.
  32. "Gregory S. Girolami | Chemistry at Illinois". chemistry.illinois.edu. Retrieved 2021-06-01.
  33. Bureau, News. "Faculty, staff and teaching assistants honored with Campus Awards for Excellence in Instruction". news.illinois.edu. Retrieved 2021-06-01.{{cite web}}: |first= has generic name (help)
  34. "Greg Girolami recognized for excellence in teaching | Chemistry at Illinois". chemistry.illinois.edu. Retrieved 2021-06-01.