Guessing

Last updated
A shell game is a scam disguised as a guessing game. Shell game in Berlin.jpg
A shell game is a scam disguised as a guessing game.

Guessing is the act of drawing a swift conclusion, called a guess, from data directly at hand, which is then held as probable or tentative, while the person making the guess (the guesser) admittedly lacks material for a greater degree of certainty. [1] A guess is an unstable answer, as it is "always putative, fallible, open to further revision and interpretation, and validated against the horizon of possible meanings by showing that one interpretation is more probable than another in light of what we already know". [2] In many of its uses, "the meaning of guessing is assumed as implicitly understood", [3] and the term is therefore often used without being meticulously defined. Guessing may combine elements of deduction, induction, abduction, and the purely random selection of one choice from a set of given options. Guessing may also involve the intuition of the guesser, [4] who may have a "gut feeling" about which answer is correct without necessarily being able to articulate a reason for having this feeling.

Contents

Gradations

Calling a coin toss to determine which team will take the offense at a sporting event is a paradigm case of a guess that requires minimal consideration of forces influencing the outcome. Adm. Haney flips the coin at the Pro Bowl.jpg
Calling a coin toss to determine which team will take the offense at a sporting event is a paradigm case of a guess that requires minimal consideration of forces influencing the outcome.
The exact number of candy pieces in this jar cannot be determined by looking at it, because not all of the pieces are visible. The amount must be guessed or estimated. Candy corn in a jar.png
The exact number of candy pieces in this jar cannot be determined by looking at it, because not all of the pieces are visible. The amount must be guessed or estimated.

Philosopher Mark Tschaepe, who has written extensively on the scientific and epistemological role of guessing, has noted that there are often-overlooked "gradations" of guessing — that is, different kinds of guesses susceptible to different levels of confidence. Tschaepe defines guessing as "an initial, deliberate originary activity of imaginatively creating, selecting, or dismissing potential solutions to problems or answers to questions as a volitional response to those problems or questions when insufficient information is available to make merely a deduction and/or induction to the solution or answer". He objects to definitions that describe guessing as either forming a "random or insufficiently formed opinion", which Tschaepe deems too ambiguous to be helpful, or "to instantaneously happen upon an opinion without reasoning". Tschaepe notes that in the latter case, the guess might appear to occur without reasoning, when in fact a reasoning process may be occurring so quickly in the mind of the guesser that it does not register as a process. [3] This reflects the observation made centuries before by Gottfried Wilhelm Leibniz, that "when I turn one way rather than another, it is often because of a series of tiny impressions of which I am not aware". [5] Tschaepe quotes the description given by William Whewell, who says that this process "goes on so rapidly that we cannot trace it in its successive steps". [3] [6]

A guess that "is merely a hunch or is groundless... is arbitrary and of little consequence epistemologically". [7] A guess made with no factual basis for its correctness may be called a wild guess. Jonathan Baron has said that "[t]he value of a wild guess is l/N + l/N - l/N = l/N", meaning that taking a true wild guess is no different from choosing an answer at random. [8] Philosopher David Stove described this process as follows:

A paradigm case of guessing is, when captains toss a coin to start a cricket match, and one of them 'calls', say "heads". This cannot be a case of knowledge, scientific knowledge or any other, if it is a case of guessing. If the captain knows that the coin will fall heads, it is just logically impossible for him also to guess that it will. More than that, however: guessing, at least in such a paradigm case, does not even belong on what may be called the epistemic scale. That is, if the captain, when he calls "heads", is guessing, he is not, in virtue of that, believing, or inclining to think, or conjecturing, or anything of that sort, that the coin will fall heads. And in fact, of course, he normally is not doing any of these things when he guesses. He just calls. And this is guessing, whatever else is. [9]

In such an instance, there not only is no reason for favoring "heads" or "tails", but everyone knows this to be the case. Tschaepe also addresses the guess made in a coin flip, contending that it merely represents an extremely limited case of guessing a random number. Tschaepe examines such guesses at greater length with the instance of guessing a number between 1 and 100, for which Tschaepe notes that the guesser "has to look for clues that are specific to what or whom is ordering them to guess, as well as possible past scenarios that involved guessing numbers", and once these are exhausted, "there comes a point very early in the process wherein no other clue to an answer exists". [3] As an exemplary case of guessing that involves progressively more information from which to make a further guess, Tschaepe notes the game of Twenty Questions, which he describes as "similar to guessing a number that the other person is thinking, but unlike guessing a number as a singular action... allows for combining abductive reasoning with deductive and inductive reasoning". [3]

An apparently unreasoned guess that turns out to be correct may be called a happy guess, [3] or a lucky guess, [10] and it has been argued that "a 'lucky guess' is a paradigm case of a belief that does not count as knowledge". [11] Jane Austen, in Emma , has the titular character respond to a character calling a match that she made a "lucky guess" by saying that "a lucky guess is never merely luck. There is always some talent in it". [12] As Tschaepe notes, William Whewell stated that certain scientific discoveries "are not improperly described as happy Guesses; and that Guesses, in these as in other instances, imply various suppositions made, of which some one turns out to be the right one". [6]

By contrast, a guess made using prior knowledge to eliminate clearly wrong possibilities may be called an informed guess or an educated guess. Uninformed guesses can be distinguished from the kind of informed guesses that lead to the development of a scientific hypothesis. Tschaepe notes: "This process of guessing is distinct from that of a coin toss or picking a number." [3] Daniel Wueste wrote: "When a decision must be made, the educated guess of the experts will be the best basis for a decision — an educated guess is better than an uneducated guess." [13]

An estimate is one kind of educated guess, although often one that involves making a numerical determination, and using some knowledge of known or observable variables to determine the most likely number or range of numbers. Wild estimation is a matter of selecting one possible answer from a set with little or no reason. Another kind of guessing is conjecture, particularly as used in mathematics to refer to a conclusion or proposition which appears to be correct based on incomplete information, but for which no proof has been found. [14] [15]

Uses

Tschaepe notes that "guessing has been indicated as an important part of scientific processes, especially with regard to hypothesis-generation". [3] Regarding scientific hypothesis-generation, Tschaepe has stated that guessing is the initial, creative process involved in abductive reasoning wherein new ideas are first suggested. Following the work of Charles S. Peirce, guessing is "a combination of musing and logical analysis." [16]

Science is done by making educated guesses about how the world works and then testing those guesses by doing experiments. Such an educated guess is called a hypothesis. [17]

People learn to guess at an early age, and there are many guessing games played by children. In practice, children may find themselves in situations where "guessing is the only strategy they have available to them". [18] In order to cope with these situations, children develop "(1) the ability to recognize situations in which guessing is the only reasonable strategy even though it provides no more than a gross estimate; (2) the ability to recognize that different levels of accuracy are possible and acceptable in different situations". [18]

Certain kinds of exams, particularly those that involve multiple choice questions, attempt to penalize exam takers for guessing by giving a small negative score for each wrong answer, so that the average number of correct guesses will be offset by the combined penalty for the average number of incorrect guesses. In such a scenario, a guesser who can eliminate one or two wrong answers can gain overall by guessing from the remaining pool of answers. [19]

According to Polanyi, guessing is the end result of a problem, observations of clues, and directedness toward solving the problem. Guessing is the action that brings about "a definite solution" (139). here is a definite process to guessing in Polanyi's account, although he does tend towards Whewell and Hempel in the comparison he makes between discovering hypotheses and Gestalt perception (144). [3]

Guessing has been asserted to be necessary in literary theory, where "we have to guess the meaning of the text because the author's intention is beyond our reach". Because the reader can never put themselves in exactly the situation the author was in when the text was written, to construe the meaning of the text "is to make a guess". [20]

Games

Game of Charades involves single person acting out a phrase, with the rest of the group guessing the phrase. Game of Charades - 05.jpg
Game of Charades involves single person acting out a phrase, with the rest of the group guessing the phrase.

A guessing game is a game in which the object is to use guessing to discover some kind of information, such as a word, a phrase, a title, or the identity or location of an object. [21] A guessing game has as its core a piece of information that one player knows, and the object is to coerce others into guessing that piece of information without actually divulging it in text or spoken word. Charades is probably the most well-known game of this type, and has spawned numerous commercial variants that involve differing rules on the type of communication to be given, such as Catch Phrase , Taboo , Pictionary , and similar. The genre also includes many game shows such as Win, Lose or Draw , Password and $25,000 Pyramid .

Many of the games are played co-operatively. In some games some player(s) know the answer, but cannot tell the other(s), instead they must help them to guess it. Guessing games are "readily adaptable for classroom use", as such a game "creates just enough tension to remain exciting, challenging, and competitive" for children, so long as the teacher designs effective rules "to eliminate unruly or unsportsmanship behavior". [21] Children in therapy may initiate guessing games as a way to avoid talking about distressing issues, so some therapists prefer other kinds of games to facilitate communication. [22]

Examples of guessing games include:

Two people playing Guess Who? at Spiel 2008 Essen08 - Kdo jsem.jpg
Two people playing Guess Who? at Spiel 2008

Software tests

In software testing, error guessing is a test method in which test cases used to find bugs in programs are established based on experience in prior testing. [23] The scope of test cases usually rely on the software tester involved, who uses past experience and intuition to determine what situations commonly cause software failure, or may cause errors to appear. [24] Typical errors include divide by zero, null pointers, or invalid parameters. Error guessing has no explicit rules for testing; test cases can be designed depending on the situation, either drawing from functional documents or when an unexpected/undocumented error is found while testing operations. [23]

Social impact

A study of guessing in social situations (for example, guessing someone's test score or potential salary) determined that there are situations where it is beneficial to intentionally either overguess (guess a higher amount) or underguess (guess a lower amount). [25] The study noted that students who knew the score they had received on a test were happier when another person who did not know the score guessed a lower number; the lower guess gave the student the positive feeling of having exceeded expectations. [25]

See also

Related Research Articles

In science and history, consilience is the principle that evidence from independent, unrelated sources can "converge" on strong conclusions. That is, when multiple sources of evidence are in agreement, the conclusion can be very strong even when none of the individual sources of evidence is significantly so on its own. Most established scientific knowledge is supported by a convergence of evidence: if not, the evidence is comparatively weak, and there will probably not be a strong scientific consensus.

<span class="mw-page-title-main">Empirical research</span> Research using empirical evidence

Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative form, a researcher can answer empirical questions, which should be clearly defined and answerable with the evidence collected. Research design varies by field and by the question being investigated. Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education.

<span class="mw-page-title-main">Scientific method</span> Interplay between observation, experiment, and theory in science

The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation. Scientific inquiry includes creating a hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

<span class="mw-page-title-main">Statistical hypothesis test</span> Method of statistical inference

A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p-value computed from the test statistic. Roughly 100 specialized statistical tests have been defined.

Confirmation bias is the tendency to search for, interpret, favor, and recall information in a way that confirms or supports one's prior beliefs or values. People display this bias when they select information that supports their views, ignoring contrary information, or when they interpret ambiguous evidence as supporting their existing attitudes. The effect is strongest for desired outcomes, for emotionally charged issues, and for deeply entrenched beliefs.

<span class="mw-page-title-main">Abductive reasoning</span> Inference seeking the simplest and most likely explanation

Abductive reasoning is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by American philosopher and logician Charles Sanders Peirce beginning in the latter half of the 19th century.

<span class="mw-page-title-main">Problem of induction</span> Question of whether inductive reasoning leads to definitive knowledge

The problem of induction is a philosophical problem that questions the rationality of predictions about unobserved things based on previous observations. These inferences from the observed to the unobserved are known as "inductive inferences". David Hume, who first formulated the problem in 1739, argued that there is no non-circular way to justify inductive inferences, while acknowledging that everyone does and must make such inferences.

Scientific evidence is evidence that serves to either support or counter a scientific theory or hypothesis, although scientists also use evidence in other ways, such as when applying theories to practical problems. Such evidence is expected to be empirical evidence and interpretable in accordance with the scientific method. Standards for scientific evidence vary according to the field of inquiry, but the strength of scientific evidence is generally based on the results of statistical analysis and the strength of scientific controls.

In scientific research, the null hypothesis is the claim that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed effect is due to chance alone, hence the term "null". In contrast with the null hypothesis, an alternative hypothesis is developed, which claims that a relationship does exist between two variables.

<span class="mw-page-title-main">Hypothetico-deductive model</span> Proposed description of the scientific method

The hypothetico-deductive model or method is a proposed description of the scientific method. According to it, scientific inquiry proceeds by formulating a hypothesis in a form that can be falsifiable, using a test on observable data where the outcome is not yet known. A test outcome that could have and does run contrary to predictions of the hypothesis is taken as a falsification of the hypothesis. A test outcome that could have, but does not run contrary to the hypothesis corroborates the theory. It is then proposed to compare the explanatory value of competing hypotheses by testing how stringently they are corroborated by their predictions.

Inductive reasoning is any of various methods of reasoning in which broad generalizations or principles are derived from a body of observations. This article is concerned with the inductive reasoning other than deductive reasoning, where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the conclusion of an inductive argument is at best probable, based upon the evidence given.

"Natural kind" is an intellectual grouping, or categorizing of things, in a manner that is reflective of the actual world and not just human interests. Some treat it as a classification identifying some structure of truth and reality that exists whether or not humans recognize it. Others treat it as intrinsically useful to the human mind, but not necessarily reflective of something more objective. Candidate examples of natural kinds are found in all the sciences, but the field of chemistry provides the paradigm example of elements.

Statistics, when used in a misleading fashion, can trick the casual observer into believing something other than what the data shows. That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator. When the statistical reason involved is false or misapplied, this constitutes a statistical fallacy.

The history of scientific method considers changes in the methodology of scientific inquiry, as distinct from the history of science itself. The development of rules for scientific reasoning has not been straightforward; scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of one or another approach to establishing scientific knowledge.

<span class="mw-page-title-main">Inquiry</span> Any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem

An inquiry is any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ways that each type of inquiry achieves its aim.

Models of scientific inquiry have two functions: first, to provide a descriptive account of how scientific inquiry is carried out in practice, and second, to provide an explanatory account of why scientific inquiry succeeds as well as it appears to do in arriving at genuine knowledge. The philosopher Wesley C. Salmon described scientific inquiry:

The search for scientific knowledge ends far back into antiquity. At some point in the past, at least by the time of Aristotle, philosophers recognized that a fundamental distinction should be drawn between two kinds of scientific knowledge—roughly, knowledge that and knowledge why. It is one thing to know that each planet periodically reverses the direction of its motion with respect to the background of fixed stars; it is quite a different matter to know why. Knowledge of the former type is descriptive; knowledge of the latter type is explanatory. It is explanatory knowledge that provides scientific understanding of the world.

<span class="mw-page-title-main">Outline of thought</span> Overview of and topical guide to thought

The following outline is provided as an overview of and topical guide to thought (thinking):

The psychology of reasoning is the study of how people reason, often broadly defined as the process of drawing conclusions to inform how people solve problems and make decisions. It overlaps with psychology, philosophy, linguistics, cognitive science, artificial intelligence, logic, and probability theory.

<span class="mw-page-title-main">Hypothesis</span> Proposed explanation for an observation, phenomenon, or scientific problem

A hypothesis is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research in a process beginning with an educated guess or thought.

Bold hypothesis or bold conjecture is a concept in the philosophy of science of Karl Popper, first explained in his debut The Logic of Scientific Discovery (1935) and subsequently elaborated in writings such as Conjectures and Refutations: The Growth of Scientific Knowledge (1963). The concept is nowadays widely used in the philosophy of science and in the philosophy of knowledge. It is also used in the social and behavioural sciences.

References

  1. James Champlin Fernald, English Synonyms and Antonyms (1914), p. 287.
  2. David M. Kaplan, Ricoeur's Critical Theory (2003), p. 68.
  3. 1 2 3 4 5 6 7 8 9 Mark Tschaepe, "Gradations of Guessing: Preliminary Sketches and Suggestions", in John R. Shook, Contemporary Pragmatism Volume 10, Number 2, (December 2013), p. 135-154.
  4. Sandra E. Hockenbury, Susan A. Nolan, Don H. Hockenbury, Psychology (2015), p. 279.
  5. Gottfried Leibniz, in New Essays on Human Understanding, tr. Peter Remnant and Jonathan Bennett (download1705) [1981]), p. 115-16.
  6. 1 2 William Whewell, The Philosophy of the Inductive Sciences: Founded Upon Their History, Volume 2 (1840), p. 206-207.
  7. Martin Schiralli, Constructive Postmodernism: Toward Renewal in Cultural and Literary Studies (1999), p. 67.
  8. Jonathan Baron, Rationality and Intelligence (2005), p. 146.
  9. David Stove, Popper and After: Four Modern Irrationalists (1982), p. 15.
  10. Oliver Ibe, Fundamentals of Applied Probability and Random Processes (2014), p. 25, defining a lucky guess in the context of a person making random guesses as "among the questions whose answers she guessed at random".
  11. Duncan Pritchard, Lee John Whittington, The Philosophy of Luck (2015), p. 186.
  12. Jane Austen, Emma (1815), p. 8.
  13. Daniel E. Wueste, Professional Ethics and Social Responsibility (1994), p. 96.
  14. Oxford Dictionary of English (2010 ed.).
  15. Schwartz, JL (1995). Shuttling between the particular and the general: reflections on the role of conjecture and hypothesis in the generation of knowledge in science and mathematics. Oxford University Press. p. 93. ISBN   9780195115772.
  16. Mark Tschaepe, "Guessing and Abduction" Transactions of the Charles S. Peirce Society. 50(1) (2014), p. 125.
  17. Daniel Larson, The Nature of Matter (2007), p. 20.
  18. 1 2 Harold L. Schoen, Marilyn Zweng, Estimation and Mental Computation: 1986 Yearbook (1986), p. 75-76.
  19. Mike McClenathan, PWN the SAT: Math Guide: 3rd Edition (2014), p. 19.
  20. Paul Ricoeur, Interpretation Theory: Discourse and the Surplus of Meaning (1976), p. 75-76.
  21. 1 2 Vicki Cohen, John Cowen, Literacy for Children in an Information Age: Teaching Reading, Writing, and Thinking (2007), p. 267.
  22. Garry L. Landreth, Play Therapy: The Art of the Relationship (2012), p. 294.
  23. 1 2 Bernard Homès, Fundamentals of Software Testing (2013), sec. 4.5.3.
  24. R.G. Evans, Supercomputational Science (2012), p. 39.
  25. 1 2 Luxi Shen, Christopher K. Hsee, Jiao Zhang, The Art and Science of Guessing Archived 2015-12-10 at the Wayback Machine , Emotion (2011), Vol. 11, No. 6, p. 1462–1468.