Gyrinicola batrachiensis | |
---|---|
Scientific classification | |
Kingdom: | |
Phylum: | |
Subclass: | |
Order: | |
Family: | |
Genus: | |
Species: | G. batrachiensis |
Binomial name | |
Gyrinicola batrachiensis (Walton, 1929) | |
Gyrinicola batrachiensis are nematode parasites that are members of the order Oxyurida. Members of this order are also known as pinworms. [1] These organisms are nematodes that feed on micro-particles in the gut of vertebrates and invertebrates. Oxyurida is further separated into two superfamilies: Oxyuroidea and Thelastomatoidea, which are parasites of vertebrates and invertebrates respectively. Oxyuroidea is composed on three families: Pharyngodonidae; parasites of herbivorous vertebrates, and Oxyuridae and Heteroxynematidae; parasites of mammals and some birds.
The life cycle of G. batrachiensis is generally simple and direct. Adult worms live in the posterior gut of the aquatic larval stage, or tadpole, of an anuran host. The females of this species produce two types of eggs: thick-shelled eggs and thin-shelled eggs, which are produced in separate uteri. Eggs deposited by females are passed through the hosts feces into the environment. Transmission occurs when infective eggs are ingested by another host. G. batrachiensis is unique in the sense that it produces two different types of eggs to reproduce and that the parasite occurs only in the tadpole stage of its host. [2]
Members of the order Oxyurida are strictly monoxenous (one host). Females typically produce thick-shelled eggs with a sub-polar operculum. In some species, including Gyrinicola batrachiensis, eggs are deposited early into development and reach the infective stage only after passing through the feces of the host. Another hallmark of Oxyurioids is the production of two types of eggs by a didelphic female, a phenomenon known as poecilogony. Accordingly, in some oxyurids there are two types of females (poecilogyny). One female lays unembryonated, thick-shelled eggs that are involved in the transmission stage. These eggs then embryonate to third-stage in the environment. The other female produces thin-shelled eggs that contain developed larvae that embryonate in utero. These eggs are used for autoinfection. In G. batrachiensis, female worms tend to be didelphic, possessing a reproductive tract with two separate branches to allow for the production of each kind of egg. The thick-shelled eggs will come out of the dorsal horn of the uterus, and the thin-shelled ones will come out from the ventral horn. [3] [4] The production of two different kinds of eggs gives G. batrachiensis an advantage when it comes to colonization. As already explained, the hard-shelled eggs are passed out in the feces and allow for the colonization of other hosts. The thin-shelled eggs then embryonate in the original host in order to preserve the colonization of that host. In this manner, G. batrachiensis manages to both spread its presence in an environment and maintain all of its colonies.
This remarkably clever parasite has other reproductive adaptations that help it colonize. Haplodiploidy, in which unfertilized eggs give rise to males and fertilized eggs give rise to females, is also found in the order. This allows a single female to successfully colonize a host by parthenogenetically producing sons, which she can then mate with to produce more offspring. [4] Also, one alternative to the haplodiploidy method of reproduction exhibited by these nematodes is reproduction by apomictic thelytoky. By this method, adult females parthenogenetically create female offspring, and males do not exist. By this manner, female nematodes are monodelphic. In this state, which is typically uncommon among G. batrachiensis, they possess a single uterus that produces thick-shelled environmentally resistant eggs that are then shed from the host. This method of reproduction occurs only in some hosts, such as Anaxyrus (=Bufo) americanus . It is assumed that the dramatic difference in each reproductive strategy may be an adaptive response to the life cycles of different host species as well as geographical location. [5]
Typically, one type of egg is predominate in an individual female. Additionally, this species utilizes alternation of generations. Those females that are born from thin-shelled eggs produce mostly thick-shelled eggs. This assures a balance between thick and thin shelled eggs to optimize colonization. [1] Oxyurida, in general, tend to take advantage of the amazing colonizing ability of the females. An individual female can colonize a host if she can last long enough to mate and produce offspring with parthenogenetically birthed sons. There is evidence that mother-son matings occur in these species. [6]
Thick-shelled eggs are the transmission and dispersal stage of G. batrachiensis. After development they are deposited in the tadpole gut and passed through the feces. These eggs require about a week to reach in the infective stage, and do not hatch until ingested by the host. It is noted that some eggs of this type remain infective in the environment through winter. They are also probably involved in the spreading of G. batrachiensis from one pond to another facilitated by birds such as herons, which feed on tadpoles. Worms that have developed from the thick-shelled eggs inside the tadpoles are most likely digested by the bird, however intact eggs pass through the intestinal tract, and transmitted to the new environment through the feces. [2]
Thin-shelled eggs, which are autoinfective, hatch and develop into adulthood within the host. They cannot be found in the feces of tadpoles and survive for a very short period of time outside of the host. [2]
Through experimental evidence it has been determined that larvae in infected tadpoles must have developed from autoinfective thin-shelled eggs deposited by the introduced females. [2] From this information we can conclude with relative certainty that the G. batrachiensis production of two types of eggs offers the maximum chance of survival for the species. Thin-shelled autoinfective eggs ensure that future generations of the nematode will live on within the existing host and its offspring, while thick-shelled eggs released into the environment allow G. batrachiensis to spread into other habitats to further the propagation of its members.
Other models of autoinfective behavior that simulate the larvae in infective eggs of Gyrinicola batrachiensis include larvae found free in the uterus of a female oxyuridan recovered from Amphisbaena alba from Venezuela. It is noteworthy to study the patterns of autoinfection in this parasite in relation to the patterns of autoinfection in Gyrinicola batrachiensis to serve as a comparison for differences in similarities in the production of two different kinds of eggs in parasites. Usually, members of the order Oxyurida are transmitted by thick-shelled eggs contaminating the host's environment. However, a few types of species from amphibians and lizards are known to produce two types of eggs: a thick shelled variety that must pass to the external environment - in order to complete the life cycle - and a thin-shelled variety that gives rises to an endogenous cycle, autoinfection. One unique aspect in the autoinfection methods of Amphisbaena alba is as follows: the developing larvae are not surrounded by an egg shell but lie free in the uterus; the only other Oxyurida in which an egg shell is lacking are those that exhibit autoinfective cycles. Thus far, autoinfection is known in only three oxyuridan genera; species of Gyrinicola have an autoinfective phase of their life cycle, along with Tachygonetria vivpara and species of Alaeuris. In all these genera, autoinfective generations alternate with dispersing generations; in Gyrinicola batrachiensis, females produce two eggs. One egg type tends to predominate in a given female and there is an alternation of generations such that females that develop from thin-shelled eggs, whereas those that develop from thick-shelled eggs produce predominantly thin-shelled eggs. However, in Amphisbaena alba, there are two types of females. One type produces thick-shelled eggs that must pass out of the host to continue their development and another type produces thin-shelled autoinfective eggs. Like in species of Gyrinicola, there is an alternation of generations. Thus, in all of the autoinfective oxuridans the basic pattern involves a generation of colonizing females that give rise to a second generation in the same host individual; worms of this second generation produce thick-shelled dispersing eggs. [6]
The patterns of autoinfection highlight mother-son mating and the sex ratio. Female biased broods are favored, involving mother-son matings and accessibility to haplodiploids. Colonization is accomplished by immature stages and female bias is favored at low colonization densities by the fact that, unlike isolated males, isolated females are not lost to the gene pool because they can mate with their parthenogenetically produced sons. In the M. Adamson and D. Ludwig model, colonization was found to occur before mating and male progeny have no fitness unless they colonize a host that contains a female. The ability of a female to produce songs with which to mate is potentially central to the colonization process. This conclusion was specifically called to attention through the case of G. batrachiensis. Using, in pinworms, mother-son matings are not expected to occur commonly in this life cycle since a female's progeny must leave the host. However, in G. batrachiensis, a second mode of reproduction has developed that makes mother-son matings possible: the method by which females produce two types of eggs, thin and thick shelled, as explored in detail in the earlier sections of this article. Once again, thin-shelled eggs contain well developed larvae that hatch at deposition and develop in the same host as the mother; thick shelled eggs are deposited in the two to four stage of cleavage and must pass to the external environment before they are infective. The colonizing period in G. batrachiensis lasts about three months. During a three-year study, the number of adult worms in hosts in late fall varied between 3 and 12. If colonization is assumed to be a random process, then the mean interval between colonizations varied between 9 and 35 days with a mean of 17, which corresponds to the period a female requires to reach reproductive age. Hence, early colonists may often reach reproductive maturity in isolation from others of the opposite sex even though, by the end of the colonization period, hosts typically contain a dozen worms. Males mature about twice as fast as females, and this lessens the delay in reproduction associated with mating with a son. Brood sex ratio is skewed in G. batrachiensis. In a sample of 234 females, 205 of 296 embryos in thick-shelled eggs were diploid and would develop as females. [1]
G. batrachiensis is a nematode that is a parasite of the gastrointestinal tract of herbivorous anuran species, specifically in posterior end of the small intestine and in the large intestine of the tadpole stage. [4] It is not seen in late-stage, metamorphosing tadpoles or in adult, carnivorous frogs. It is known to occur in 8 anuran species: Bufo americanus, Hyla versicolar, Pseudacris triserata, Rana aura, R. catesbeina, R. clamitans, R. pipiens, and R. sylvatica. These hosts have been found in Eastern Canadian provinces, as well as California, Ohio, and Michigan in the United States. G. batrachiensis is of special, also, in that it is quite rare for Oxyurida to be found in aquatic hosts, so rare that only 3 such species exist. This is so because monoxeny is not a successful way of life in aquatic hosts. [3]
Recent studies have shown that G. batrachiensis has a significant effect on the developmental rates of their tadpole hosts. They have actually been found to accelerate the development and metamorphosis. The study by Pryor and Bjorndal (2005) [5] found that the mean time to metamorphosis was 16 days shorter and that the range of times taken to reach metamorphosis was significantly narrower in tadpoles infected with these nematodes than the time taken in uninfected tadpoles. Some of the proposed manners by which this phenomenon may be explained are:
However, at the time of metamorphosis, infected bullfrogs had the same body size and appearance as uninfected bullfrogs, suggesting that the parasite has little impact on the physical morphology of its host (other than the shortening of development time). [5]
Strongyloides stercoralis is a human pathogenic parasitic roundworm causing the disease strongyloidiasis. Its common name in the US is threadworm. In the UK and Australia, however, the term threadworm can also refer to nematodes of the genus Enterobius, otherwise known as pinworms.
Trichuriasis, also known as whipworm infection, is an infection by the parasitic worm Trichuris trichiura (whipworm). If infection is only with a few worms, there are often no symptoms. In those who are infected with many worms, there may be abdominal pain, fatigue and diarrhea. The diarrhea sometimes contains blood. Infections in children may cause poor intellectual and physical development. Low red blood cell levels may occur due to loss of blood.
Hookworm infection is an infection by a type of intestinal parasite known as a hookworm. Initially, itching and a rash may occur at the site of infection. Those only affected by a few worms may show no symptoms. Those infected by many worms may experience abdominal pain, diarrhea, weight loss, and tiredness. The mental and physical development of children may be affected. Anemia may result.
Ascaridia galli is a parasitic roundworm belonging to the phylum Nematoda. Nematodes of the genus Ascaridia are essentially intestinal parasites of birds. A. galli is the most prevalent and pathogenic species, especially in domestic fowl, Gallus domesticus. It causes ascaridiasis, a disease of poultry due to heavy worm infection, particularly in chickens and turkeys. It inhabits the small intestine, and can be occasionally seen in commercial eggs.
Parasitic worms, also known as helminths, are large macroparasites; adults can generally be seen with the naked eye. Many are intestinal worms that are soil-transmitted and infect the gastrointestinal tract. Other parasitic worms such as schistosomes reside in blood vessels.
Ancylostoma duodenale is a species of the roundworm genus Ancylostoma. It is a parasitic nematode worm and commonly known as the Old World hookworm. It lives in the small intestine of hosts such as humans, cats and dogs, where it is able to mate and mature. Ancylostoma duodenale and Necator americanus are the two human hookworm species that are normally discussed together as the cause of hookworm infection. They are dioecious. Ancylostoma duodenale is abundant throughout the world, including Southern Europe, North Africa, India, China, Southeast Asia, some areas in the United States, the Caribbean, and South America.
Uncinaria stenocephala is a nematode that parasitizes dogs, cats, and foxes as well as humans. It is rare to find in cats in the United States. Uncinaria stenocephala is the most common canine hookworm in cooler regions, such as Canada and the northern regions of the US, where it can be found primarily in foxes (40%). U. stenocephala is also one of the most common hookworms in the UK, called the northern hookworm, however it has a rather low prevalence. U. stenocephala is also considered to be zoonotic hookworms because they live in animals but can be transmitted to humans.
A gapeworm, also known as a red worm and forked worm, is a parasitic nematode worm that infects the tracheas of certain birds. The resulting disease, known as "gape", occurs when the worms clog and obstruct the airway. The worms are also known as "red worms" or "forked worms" due to their red color and the permanent procreative conjunction of males and females. Gapeworms are common in young, domesticated chickens and turkeys.
Habronema muscae is an internal stomach parasite that is most commonly found in horses. It is the most common cause of cutaneous ulcerative granulomas in the horse. It is in genus Habronema.
Toxocara canis is a worldwide-distributed helminth parasite that primarily infects dogs and other canids, but can also infect other animals including humans. The name is derived from the Greek word "toxon," meaning bow or quiver, and the Latin word "caro," meaning flesh. T. canis live in the small intestine of the definitive host. This parasite is very common in puppies and somewhat less common in adult dogs. In adult dogs, infection is usually asymptomatic but may be characterized by diarrhea. By contrast, untreated infection with Toxocara canis can be fatal in puppies, causing diarrhea, vomiting, pneumonia, enlarged abdomen, flatulence, poor growth rate, and other complications.
Capillaria philippinensis is a parasitic nematode which causes intestinal capillariasis. This sometimes fatal disease was first discovered in Northern Luzon, Philippines, in 1964. Cases have also been reported from China, Egypt, Indonesia, Iran, Japan, Korea, Lao PDR, Taiwan and Thailand. Cases diagnosed in Italy and Spain were believed to be acquired abroad, with one case possibly contracted in Colombia. The natural life cycle of C. philippinensis is believed to involve fish as intermediate hosts, and fish-eating birds as definitive hosts. Humans acquire C. philippinensis by eating small species of infested fish whole and raw.
Trichuris suis is a whipworm; the variations in thickness of the anterior and posterior segments give the parasite the characteristic "whip-like" appearance. Adult females measure 6 to 8 cm and adult males 3 to 4 cm. T. suis eggs are oval and yellow-brown with bipolar plugs. T. suis is also used in helminthic therapy studies.
Toxascaris leonina is a common parasitic roundworm found in dogs, cats, foxes, and related host species. T. leonina is an ascarid nematode, a worldwide distributed helminth parasite which is in a division of eukaryotic parasites that, unlike external parasites such as lice and fleas, live inside their host. The definitive hosts of T. leonina include canids and felines (cats), while the intermediate hosts are usually rodents, such as mice or rats. Infection occurs in the definitive host when the animal eats an infected rodent. While T. leonina can occur in either dogs or cats, it is far more frequent in cats.
Rhabdias bufonis is a species of parasitic nematode in the family Rhabdiasidae. It was first described from the lungs of the European common toad (Bufo bufo) but has also been found in a number of other species of frog.
Eustrongylidosis is a parasitic disease that mainly affects wading birds worldwide; however, the parasite's complex, indirect lifecycle involves other species, such as aquatic worms and fish. Moreover, this disease is zoonotic, which means the parasite can transmit disease from animals to humans. Eustrongylidosis is named after the causative agent Eustrongylides, and typically occurs in eutrophicated waters where concentrations of nutrients and minerals are high enough to provide ideal conditions for the parasite to thrive and persist. Because eutrophication has become a common issue due to agricultural runoff and urban development, cases of eustrongylidosis are becoming prevalent and hard to control. Eustrongylidosis can be diagnosed before or after death by observing behavior and clinical signs, and performing fecal flotations and necropsies. Methods to control it include preventing eutrophication and providing hosts with uninfected food sources in aquaculture farms. Parasites are known to be indicators of environmental health and stability, so should be studied further to better understand the parasite's lifecycle and how it affects predator-prey interactions and improve conservation efforts.
Parascaris equorum is a species of ascarid that is the equine roundworm. Amongst horse owners, the parasites are colloquially called "Ascarids". This is a host-specific helminth intestinal parasite that can infect horses, donkeys, and zebras. Horses up to six months of age are the most susceptible to infection. After this time, infection rates begin to decline and is extremely uncommon in horses over twelve months of age. It cannot infect humans or other animals. It is yellow-white in color, and females can become as large as 15 inches (38 cm) in length. Found worldwide, P. equorum is one of the most difficult equine parasites to kill, requiring larger doses of more powerful anthelmintic medications than are needed for other equine parasites.
Anisakis simplex, known as the herring worm, is a species of nematode in the genus Anisakis. Like other nematodes, it infects and settles in the organs of marine animals, such as salmon, mackerels and squids. It is commonly found in cold marine waters, such as the Pacific Ocean and Atlantic Ocean.
Hookworms are intestinal, blood-feeding, parasitic roundworms that cause types of infection known as helminthiases. Hookworm infection is found in many parts of the world, and is common in areas with poor access to adequate water, sanitation, and hygiene. In humans, infections are caused by two main species of roundworm, belonging to the genera Ancylostoma and Necator. In other animals the main parasites are species of Ancylostoma. Hookworm is closely associated with poverty because it is most often found in impoverished areas, and its symptoms promote poverty through the educational and health effects it has on children. It is the leading cause of anemia and undernutrition in developing countries, while being one of the most commonly occurring diseases among poor people. Hookworm thrives in areas where rainfall is sufficient and keeps the soil from drying out, and where temperatures are higher, making rural, coastal areas prime conditions for the parasite to breed.
Cat worm infections, the infection of cats (Felidae) with parasitic worms, occur frequently. Most worm species occur worldwide in both domestic and other cats, but there are regional, species and lifestyle differences in the frequency of infestation. According to the classification of the corresponding parasites in the zoological system, infections can be divided into those caused by nematode and flatworms - in the case of the latter, mainly cestoda and trematoda - while other strains are of no veterinary significance. While threadworms usually do not require an intermediate host for their reproduction, the development cycle of flatworms always proceeds via alternate hosts.
Nematode infection in dogs - the infection of dogs with parasitic nemamotodes - are, along with tapeworm infections and infections with protozoa, frequent parasitoses in veterinary practice. Nematodes, as so-called endoparasites, colonize various internal organs - most of them the digestive tract - and the skin. To date, about 30 different species of nematode have been identified in domestic dogs; they are essentially also found in wild dog species. However, the majority of them often cause no or only minor symptoms of disease in adult animals. The infection therefore does not necessarily have to manifest itself in a worm disease (helminthosis). For most nematodes, an infection can be detected by examining the feces for eggs or larvae. Roundworm infection in dogs and the hookworm in dogs is of particular health significance in Central Europe, as they can also be transmitted to humans (zoonosis). Regular deworming can significantly reduce the frequency of infection and thus the risk of infection for humans and dogs.