H-Bio is an oil-refining processes which involves converting vegetable oil into high-quality diesel via hydrogenation. Hydrogenation is a chemical reaction in which a substance is treated with hydrogen, resulting in a new product. In H-Bio, hydrogen is added to vegetable oil and mineral oil, making a usable diesel that is made up of diesel oil and 10% vegetable oil. [1] The process was first developed in 2006 by the Brazilian state-owned gas company Petrobras, and was primarily established for commercial use. [2]
H-Bio can be used to power many cars that already use diesel, therefore it can be widely sold in fuel stations. The process has many advantages when compared to traditional methods, but also has drawbacks. H-Bio has been tested and confirmed as a viable method to supply diesel globally.
The procedure requires that the diesel pass through a hydrodesulfurization (HDS) chamber, which removes the majority of the sulfur content from the diesel. The hydrocarbons are broken up in a cracking unit, and the diesel is then mixed with HDS light cycle oil.
Diesel first passes through a distillation unit to undergo hydrodesulfurization. This is the process of removing sulfur from petroleum-based products by chemically combining it with hydrogen, resulting in hydrogen sulfide. Hydrogen and sulfur are combined in a hydrodesulfurization reactor, usually under the presence of a metal catalyst, where pressure is added to the bond and it is heated to temperatures ranging from 300 to 400 °C (572 to 752 °F), resulting in hydrogen sulfide molecules that are not included in the diesel. [3]
The diesel is then passed through the cracking unit. This breaks up the hydrocarbons that make up the diesel into smaller sizes. [4]
Next, the diesel is mixed with HDS light cycle oil (LCO). [1] This is a poor diesel fuel due to its high sulfur content and poor engine ignition performance, thus it is mixed with H-Bio. The two are combined to produce the maximum amount of high-quality fuel from the given amount of supply. When LCO and H-Bio are blended, the fluid viscosity is modified for maximum performance, resulting in high-quality diesel. The resulting diesel has great ignition performance with very little sulfur content. [5]
Finally, the diesel is mixed with other components that do not require the hydrogenation process, and this mixture results in H-Bio. [1]
H-Bio is compatible with any vehicle that already uses diesel as its main fuel source, without requiring modifications to the engine or transmission. Additionally, H-Bio can be sold to consumers in local fuel stations, unlike its counterpart, biodiesel. [6]
The main advantages of the H-Bio are that:
H-Bio also has drawbacks:
Petrobras filed for patents to the National Industrial Property Institute (Brazil) to mass-produce H-Bio and distribute it globally. Its short-term goal was to create two refineries and eventually expand to five refineries. It planned to test this process, with different types of vegetable oils, in other refineries. [1]
Diesel fuel, also called diesel oil, heavy oil (historically) or simply diesel, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a result of compression of the inlet air and then injection of fuel. Therefore, diesel fuel needs good compression ignition characteristics.
An oil refinery or petroleum refinery is an industrial process plant where petroleum is transformed and refined into products such as gasoline (petrol), diesel fuel, asphalt base, fuel oils, heating oil, kerosene, liquefied petroleum gas and petroleum naphtha. Petrochemical feedstock like ethylene and propylene can also be produced directly by cracking crude oil without the need of using refined products of crude oil such as naphtha. The crude oil feedstock has typically been processed by an oil production plant. There is usually an oil depot at or near an oil refinery for the storage of incoming crude oil feedstock as well as bulk liquid products. In 2020, the total capacity of global refineries for crude oil was about 101.2 million barrels per day.
In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon–carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking long-chain hydrocarbons into short ones. This process requires high temperatures.
Alternative fuels, also known as non-conventional and advanced fuels, are fuels derived from sources other than petroleum. Alternative fuels include gaseous fossil fuels like propane, natural gas, methane, and ammonia; biofuels like biodiesel, bioalcohol, and refuse-derived fuel; and other renewable fuels like hydrogen and electricity.
Hydrogenolysis is a chemical reaction whereby a carbon–carbon or carbon–heteroatom single bond is cleaved or undergoes lysis (breakdown) by hydrogen. The heteroatom may vary, but it usually is oxygen, nitrogen, or sulfur. A related reaction is hydrogenation, where hydrogen is added to the molecule, without cleaving bonds. Usually hydrogenolysis is conducted catalytically using hydrogen gas.
Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel, ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.
Petroleum products are materials derived from crude oil (petroleum) as it is processed in oil refineries. Unlike petrochemicals, which are a collection of well-defined usually pure organic compounds, petroleum products are complex mixtures. Most petroleum is converted into petroleum products, which include several classes of fuels.
Catalytic reforming is a chemical process used to convert naphthas from crude oil into liquid products called reformates, which are premium "blending stocks" for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes, which are then partially dehydrogenated to produce high-octane aromatic hydrocarbons. The dehydrogenation also produces significant amounts of byproduct hydrogen gas, which is fed into other refinery processes such as hydrocracking. A side reaction is hydrogenolysis, which produces light hydrocarbons of lower value, such as methane, ethane, propane and butanes.
Amine gas treating, also known as amine scrubbing, gas sweetening and acid gas removal, refers to a group of processes that use aqueous solutions of various alkylamines (commonly referred to simply as amines) to remove hydrogen sulfide (H2S) and carbon dioxide (CO2) from gases. It is a common unit process used in refineries, and is also used in petrochemical plants, natural gas processing plants and other industries.
The oil and gas industry is usually divided into three major sectors: upstream, midstream, and downstream. The downstream sector is the refining of petroleum crude oil and the processing and purifying of raw natural gas, as well as the marketing and distribution of products derived from crude oil and natural gas. The downstream sector reaches consumers through products such as gasoline or petrol, kerosene, jet fuel, diesel oil, heating oil, fuel oils, lubricants, waxes, asphalt, natural gas, and liquefied petroleum gas (LPG) as well as naphtha and hundreds of petrochemicals.
Petroleum coke, abbreviated coke, pet coke or petcoke, is a final carbon-rich solid material that derives from oil refining, and is one type of the group of fuels referred to as cokes. Petcoke is the coke that, in particular, derives from a final cracking process—a thermo-based chemical engineering process that splits long chain hydrocarbons of petroleum into shorter chains—that takes place in units termed coker units. Stated succinctly, coke is the "carbonization product of high-boiling hydrocarbon fractions obtained in petroleum processing ". Petcoke is also produced in the production of synthetic crude oil (syncrude) from bitumen extracted from Canada's tar sands and from Venezuela's Orinoco oil sands. In petroleum coker units, residual oils from other distillation processes used in petroleum refining are treated at a high temperature and pressure leaving the petcoke after driving off gases and volatiles, and separating off remaining light and heavy oils. These processes are termed "coking processes", and most typically employ chemical engineering plant operations for the specific process of delayed coking.
Hydrodesulfurization (HDS), also called hydrotreatment or hydrotreating, is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products, such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils. The purpose of removing the sulfur, and creating products such as ultra-low-sulfur diesel, is to reduce the sulfur dioxide emissions that result from using those fuels in automotive vehicles, aircraft, railroad locomotives, ships, gas or oil burning power plants, residential and industrial furnaces, and other forms of fuel combustion.
The Gujarat Refinery is an oil refinery located at Koyali, Vadodara District in Gujarat, Western India. It is the third largest refinery owned by Indian Oil Corporation after Paradip and Panipat Refinery. The refinery is currently under projected expansion to 18 million tonnes per year.
Desulfurization or desulphurisation is a chemical process for the removal of sulfur from a material. This involves either the removal of sulfur from a molecule or the removal of sulfur compounds from a mixture such as oil refinery streams.
Vegetable oils are increasingly used as a substitute for fossil fuels. Vegetable oils are the basis of biodiesel, which can be used like conventional diesel. Some vegetable oil blends are used in unmodified vehicles, but straight vegetable oil often needs specially prepared vehicles which have a method of heating the oil to reduce its viscosity and surface tension, sometimes specially made injector nozzles, increased injection pressure and stronger glow-plugs, in addition to fuel pre-heating is used. Another alternative is vegetable oil refining.
Hydrotreated vegetable oil (HVO) is a biofuel made by the hydrocracking or hydrogenation of vegetable oil. Hydrocracking breaks big molecules into smaller ones using hydrogen while hydrogenation adds hydrogen to molecules. These methods can be used to create substitutes for gasoline, diesel, propane, kerosene and other chemical feedstock. Diesel fuel produced from these sources is known as green diesel or renewable diesel.
The Płock refinery is a large oil refinery and petrochemical complex located in Płock, Poland. It is owned by PKN Orlen, and is one of the two crude oil refineries in Poland, the other one is Gdansk refinery. The refinery has a Nelson complexity index of 9.5 and a capacity is 16.3 million tonnes per year or 276,000 barrels per day of crude oil.
Petroleum refining processes are the chemical engineering processes and other facilities used in petroleum refineries to transform crude oil into useful products such as liquefied petroleum gas (LPG), gasoline or petrol, kerosene, jet fuel, diesel oil and fuel oils.
Bashneft – Ufimsky refinery plant is one of the most up-to-date oil refineries in Russia which can produce a wide range of petroleum products.
The Dangote Refinery is an oil refinery owned by Dangote Group that was inaugurated on 22 May 2023 in Lekki, Nigeria. When fully operational, it is expected to have the capacity to process about 650,000 barrels of crude oil per day, making it the largest single-train refinery in the world. The investment is over US$19 billion.