HP 200A

Last updated
HP 200A front panel Hp200a-front-panel.JPG
HP 200A front panel
Insides of the Hewlett-Packard HP 200A. The light bulb repurposed as a positive temperature coefficient resistor is to the right of the upper section of the variable capacitor, which is the large structure in the center. Hp200a-insides-crop.JPG
Insides of the Hewlett-Packard HP 200A. The light bulb repurposed as a positive temperature coefficient resistor is to the right of the upper section of the variable capacitor, which is the large structure in the center.

The HP 200A, first built in 1938, was the first product [1] made by Hewlett-Packard and was manufactured in David Packard's garage in Palo Alto, California.

Contents

It was a low-distortion audio oscillator used for testing sound equipment. It used the Wien bridge oscillator circuit, that had been the subject of Bill Hewlett's masters thesis. It was also the first such commercial oscillator to use a simple light bulb as the temperature-dependent resistor in its feedback network. [2] The light bulb was an inexpensive and effective automatic gain control that not only kept the oscillator output amplitude constant, but it also kept the oscillator's loop gain near unity. The latter is a key technique for achieving a low distortion oscillator. Earlier, Larned Meacham had used light bulbs in bridge circuits to stabilize and linearize oscillators in 1938. [3]

The product code was chosen to give the impression that HP was an established company. [4] A variation, the HP 200B, was customized for Walt Disney, which bought eight units for use in the production of Fantasia . [5]

The circuit diagram is shown in Hewlett's 1939 patent. [6] [7] [8]

Specification: [9]
HP 200AHP 200B
Frequency range35 Hz-35 kHz in 3 range
X1: 35-350 Hz
X10: 350-3500 Hz
X100: 3500- 35 000 Hz
20 Hz-20 kHz in 3 range
X1: 20-200 Hz
X10: 200-2000 Hz
X100: 2000- 20 000 Hz
Scale of dialer35-35020-200
Calibration accuracyless than 2%less than 2%
Output power1 W 500 Ω load1 W 500 Ω load
Distortionless than 1% between 35 Hz and 15 kHzless than 1% between 35 Hz and 15 kHz
Output impedanceless than 75Ω under 15 kHzless than 75Ω under 15 kHz
Power voltage115 V 50-60 Hz 60 W115 V 50-60 Hz 60 W

Development

Through the 1940s and into the 1950s, the subsequent versions of the 200A covered different and wider frequency ranges. The latest version was the 200CD. [10] It covered from the subaudio 5  Hz to the low end (Long Wave) of the AM radio band at 600 kilohertz. The 200CD became a ubiquitous audio generator in engineering laboratories worldwide from the 1950s to the 1990s. [11] [12]

Operation

Simplified schematic of a Wien bridge oscillator from Hewlett's US patent 2,268,872. Unmarked capacitors have enough capacitance to be considered short circuits at signal frequency. Unmarked resistors are considered to be appropriate values for biasing and loading the vacuum tubes. Node labels and reference designators in this figure are not the same as used in the patent. The vacuum tubes indicated in Hewlett's patent were pentodes rather than the triodes shown here. Wien bridge oscillator schematic from Hewletts US patent.png
Simplified schematic of a Wien bridge oscillator from Hewlett's US patent 2,268,872. Unmarked capacitors have enough capacitance to be considered short circuits at signal frequency. Unmarked resistors are considered to be appropriate values for biasing and loading the vacuum tubes. Node labels and reference designators in this figure are not the same as used in the patent. The vacuum tubes indicated in Hewlett's patent were pentodes rather than the triodes shown here.

William R. Hewlett's Wien bridge oscillator can be considered as a combination of a differential amplifier and a Wien bridge, connected in a positive feedback loop between the amplifier output and differential inputs. At the oscillating frequency, the bridge is almost balanced and has very small transfer ratio. The loop gain is a product of the very high amplifier gain and the very low bridge ratio. [13] In Hewlett's circuit, the amplifier is implemented by two vacuum tubes.

The amplifier's inverting input is the cathode of tube V1 and the non-inverting input is the control grid of tube V2. To simplify analysis, all the components other than R1, R2, C1 and C2 can be modeled as a non-inverting amplifier with a gain of 1+Rf/Rb and with a high input impedance. R1, R2, C1 and C2 form a bandpass filter which is connected to provide positive feedback at the frequency of oscillation. Rb self heats and increases the negative feedback which reduces the amplifier gain until the point is reached that there is just enough gain to sustain sinusoidal oscillation without over driving the amplifier.

If R1 = R2 and C1 = C2 then at equilibrium Rf/Rb = 2 and the amplifier gain is 3. When the circuit is first energized, the lamp is cold and the gain of the circuit is greater than 3 which ensures start up. The dc bias current of vacuum tube V1 also flows through the lamp. This does not change the principles of the circuit's operation, but it does reduce the amplitude of the output at equilibrium because the bias current provides part of the heating of the lamp.

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Multivibrator</span> Electronic circuit used to implement two-state devices

A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, latches and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube amplifiers cross-coupled by a resistor-capacitor network. They called their circuit a "multivibrator" because its output waveform was rich in harmonics. A variety of active devices can be used to implement multivibrators that produce similar harmonic-rich wave forms; these include transistors, neon lamps, tunnel diodes and others. Although cross-coupled devices are a common form, single-element multivibrator oscillators are also common.

<span class="mw-page-title-main">Relaxation oscillator</span> Oscillator that produces a nonsinusoidal repetitive waveform

In electronics, a relaxation oscillator is a nonlinear electronic oscillator circuit that produces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave. The circuit consists of a feedback loop containing a switching device such as a transistor, comparator, relay, op amp, or a negative resistance device like a tunnel diode, that repetitively charges a capacitor or inductor through a resistance until it reaches a threshold level, then discharges it again. The period of the oscillator depends on the time constant of the capacitor or inductor circuit. The active device switches abruptly between charging and discharging modes, and thus produces a discontinuously changing repetitive waveform. This contrasts with the other type of electronic oscillator, the harmonic or linear oscillator, which uses an amplifier with feedback to excite resonant oscillations in a resonator, producing a sine wave.

The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit was invented in 1915 by American engineer Ralph Hartley. The distinguishing feature of the Hartley oscillator is that the tuned circuit consists of a single capacitor in parallel with two inductors in series, and the feedback signal needed for oscillation is taken from the center connection of the two inductors.

<span class="mw-page-title-main">Regenerative circuit</span> Electronic circuit using positive feedback

A regenerative circuit is an amplifier circuit that employs positive feedback. Some of the output of the amplifying device is applied back to its input to add to the input signal, increasing the amplification. One example is the Schmitt trigger, but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage.

<span class="mw-page-title-main">Schmitt trigger</span> Electronic comparator circuit with hysteresis

In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. The circuit is named a trigger because the output retains its value until the input changes sufficiently to trigger a change. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.

<span class="mw-page-title-main">Voltage-controlled oscillator</span> Oscillator with frequency controlled by a voltage input

A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The applied input voltage determines the instantaneous oscillation frequency. Consequently, a VCO can be used for frequency modulation (FM) or phase modulation (PM) by applying a modulating signal to the control input. A VCO is also an integral part of a phase-locked loop. VCOs are used in synthesizers to generate a waveform whose pitch can be adjusted by a voltage determined by a musical keyboard or other input.

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

Linear electronic oscillator circuits, which generate a sinusoidal output signal, are composed of an amplifier and a frequency selective element, a filter. A linear oscillator circuit which uses an RC network, a combination of resistors and capacitors, for its frequency selective part is called an RC oscillator.

The Clapp oscillator or Gouriet oscillator is an LC electronic oscillator that uses a particular combination of an inductor and three capacitors to set the oscillator's frequency. LC oscillators use a transistor and a positive feedback network. The oscillator has good frequency stability.

<span class="mw-page-title-main">Wien bridge oscillator</span> Electric circuit that generates sine waves

A Wien bridge oscillator is a type of electronic oscillator that generates sine waves. It can generate a large range of frequencies. The oscillator is based on a bridge circuit originally developed by Max Wien in 1891 for the measurement of impedances. The bridge comprises four resistors and two capacitors. The oscillator can also be viewed as a positive gain amplifier combined with a bandpass filter that provides positive feedback. Automatic gain control, intentional non-linearity and incidental non-linearity limit the output amplitude in various implementations of the oscillator.

<span class="mw-page-title-main">Ring oscillator</span> Type of digital circuit

A ring oscillator is a device composed of an odd number of NOT gates in a ring, whose output oscillates between two voltage levels, representing true and false. The NOT gates, or inverters, are attached in a chain and the output of the last inverter is fed back into the first.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

A phase-shift oscillator is a linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output fed back to its input through a phase-shift network consisting of resistors and capacitors in a ladder network. The feedback network 'shifts' the phase of the amplifier output by 180 degrees at the oscillation frequency to give positive feedback. Phase-shift oscillators are often used at audio frequency as audio oscillators.

In electronics, motorboating is a type of low frequency parasitic oscillation that sometimes occurs in audio and radio equipment and often manifests itself as a sound similar to an idling motorboat engine, a "put-put-put", in audio output from speakers or earphones. It is a problem encountered particularly in radio transceivers and older vacuum tube audio systems, guitar amplifiers, PA systems and is caused by some type of unwanted feedback in the circuit. The amplifying devices in audio and radio equipment are vulnerable to a variety of feedback problems, which can cause distinctive noise in the output. The term motorboating is applied to oscillations whose frequency is below the range of hearing, from 1 to 10 hertz, so the individual oscillations are heard as pulses. Sometimes the oscillations can even be seen visually as the woofer cones in speakers slowly moving in and out.

<span class="mw-page-title-main">Reflex receiver</span>

A reflex radio receiver, occasionally called a reflectional receiver, is a radio receiver design in which the same amplifier is used to amplify the high-frequency radio signal (RF) and low-frequency audio (sound) signal (AF). It was first invented in 1914 by German scientists Wilhelm Schloemilch and Otto von Bronk, and rediscovered and extended to multiple tubes in 1917 by Marius Latour and William H. Priess. The radio signal from the antenna and tuned circuit passes through an amplifier, is demodulated in a detector which extracts the audio signal from the radio carrier, and the resulting audio signal passes again through the same amplifier for audio amplification before being applied to the earphone or loudspeaker. The reason for using the amplifier for "double duty" was to reduce the number of active devices, vacuum tubes or transistors, required in the circuit, to reduce the cost. The economical reflex circuit was used in inexpensive vacuum tube radios in the 1920s, and was revived again in simple portable tube radios in the 1930s.

<span class="mw-page-title-main">Pierce oscillator</span>

The Pierce oscillator is a type of electronic oscillator particularly well-suited for use in piezoelectric crystal oscillator circuits. Named for its inventor, George W. Pierce (1872–1956), the Pierce oscillator is a derivative of the Colpitts oscillator. Virtually all digital IC clock oscillators are of Pierce type, as the circuit can be implemented using a minimum of components: a single digital inverter, one resistor, two capacitors, and the quartz crystal, which acts as a highly selective filter element. The low manufacturing cost of this circuit and the frequency stability of quartz crystals make it advantageous for many consumer electronics applications.

<span class="mw-page-title-main">Seiler oscillator</span>

The Seiler oscillator is an LC electronic oscillator. It was presented in 1941 by E. O. Seiler. The original implementation used a vacuum tube in an Electron-coupled oscillator circuit. Like the Clapp oscillator and the Vackář oscillator it is a variation of the Colpitts oscillator. It uses a voltage divider made of two capacitors, named C3 and C4 in the original schematic. The tuning capacitor C1 is parallel to the inductance L1 of the LC circuit. In an Clapp oscillator, the tuning capacitor is in series to the inductance. The variable capacitor C2 controls the coupling between the tube and tank.

<span class="mw-page-title-main">Cathode follower oscillator</span> Electronic oscillator

The Cathode follower oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The circuit is also known as differential amplifier oscillator, emitter follower oscillator, source-coupled oscillator or Peltz oscillator. This oscillator uses one connection to get a signal from the LC-circuit and feeds an amplified signal back. The amplifier is a long-tail pair of two triodes, two bipolar transistors or two junction FETs.

References

  1. "Hewlett-Packard's First Product: The 200A - HP History".
  2. Gordon Laing (2004), Digital retro, The Ilex Press Ltd, ISBN   9781904705390
  3. Meacham, L. A. (October 1938), "The Bridge Stabilized Oscillator" (PDF), Bell System Technical Journal, 17 (4): 574–591, doi:10.1002/j.1538-7305.1938.tb00799.x, archived from the original (PDF) on 2014-04-14. Frequency and amplitude stabilization of an oscillator with no tube overloading. Uses tungsten lamp to balance bridge.
  4. Pasiuk, Laurie (2006). Vault guide to the top tech employers. Vault Inc. p. 111. ISBN   978-1-58131-339-0 . Retrieved 2010-05-10.
  5. "The 200B Oscillator and Disney Fantasound - HP History".
  6. US 2268872, Hewlett, William R.,"Variable Frequency Oscillation Generator",published 11 July 1939,issued 6 January 1942
  7. "Variable Frequency Oscillation Generator, US patent 2,268,872" (PDF).
  8. "Model 200A audio oscillator, 1939".
  9. "User manual for Model 200A Audio Oscillator, Serial 30223 and Above" (PDF). July 9, 1951.
  10. "The 200AB and 200CD: Always Improving - HP History".
  11. "Hewlett-Packard HP-200CD audio generator".
  12. "Dating Vintage HP Instruments".
  13. Schilling, Donald; Belove, Charles (1968), Electronic Circuits: Discrete and Integrated, McGraw-Hill, pp. 612–614