HP 2640

Last updated
HP 2640A terminal Snow Survey65 (38349185954).jpg
HP 2640A terminal
HP 2647A terminal HP 2647A terminal.jpg
HP 2647A terminal

The HP 2640A and other HP 264X models were block-mode "smart" and intelligent ASCII standard serial terminals produced by Hewlett-Packard using the Intel 8008 and 8080 microprocessors.

Contents

History

The HP 2640A [1] was introduced in November 1974 at a list price of US$3000. [2] [3] [4] Based on the Intel 8008 CPU, it had 8 KB of ROM firmware and came standard with 1 KB of RAM, expandable up to 8 KB (two 4 KB semiconductor RAM cards). In September 1975 Hewlett-Packard introduced the HP 2644A, which was an HP 2640A with mass storage (two mini-tape cartridges, 110 KB each), for US$5000. [5] HP followed up in 1976 with the 2640B, an updated, cost-reduced version of the 2640A with a list price of US$2600, [6] along with three international versions: the Cyrillic-oriented 2640C, the Swedish/Finnish-oriented 2640S, and the Danish/Norwegian-oriented 2640N. [7] All of these early members of the 2640 series had the relatively slow 8008 CPU running at 700 kHz, and they were thus limited to speeds of 2400 baud. The 2640A and 2644A were discontinued in February 1977, [8] [9] but the 2640B remained in production until August 1981. [10]

In September 1976, HP introduced the 2645A, which could handle speeds up to 9600 baud and had a number of advanced features, including as an option the mini-tape cartridge storage of the 2644A. [11] The introductory list price was US$3500, or US$5100 with the cartridge storage option. [12] [13] The 2645A was the first terminal in the 2640 series to use the Intel 8080A, rather than the 8008, as its CPU. Almost all subsequent 2640-family terminals would have 8080A CPUs, all running at 2.5 MHz. The 2645A was followed in November 1976 by the 2641A, a 2645A derivative designed for the APL programming language, [14] and in April 1977 by the 2645R, a 2645 which supported right-to-left Arabic text as well as left-to-right text in Roman letters. [15] In July 1977, Hewlett-Packard introduced the 2648A graphics terminal, a 2645A derivative which added 720×360 black-and-white raster graphics in a separate graphics page that could overlay the main text memory. [16] This was joined in May 1978 by the 2647A programmable graphics terminal, which included its own BASIC interpreter. [17] In October 1980, HP introduced the 2642A, which was like the 2645A, but instead of optional tape cartridges it had a standard 5.25-inch floppy disk drive storing 270 KB per diskette. [18] The ultimate and final model in the 2640 series was the 2647F programmable graphics terminal introduced in June 1982, an improved replacement for the 2647A with the 2642A's floppy drive. [19] Unlike the preceding terminals in the 264X family that had 8080A CPUs, the 2647F used the faster Intel 8085A running at 4.9 MHz. HP kept the 264X family in production until early 1985. [20]

Model number

The HP catalogs usually refer to the terminal model as simply "2640A", and infrequently as "HP 2640", or "HP 2640A" (both with a blank after the "HP"), or "2640". The incorrect "HP2640" and "HP2640A" are often seen outside of HP.

Functionality

The functionality defined by the HP 264X series hasn't changed much as the preferred terminal for HP1000 and HP 3000 series computers. They never achieved the fame of the VT100 among programmers, but included sophisticated features not found in the VT100, such as offline forms, multipages, and (in some models) local storage.

The styling looked like vaguely like a microwave or toaster oven. It was boxy, with a "widescreen" aspect ratio for the reason that it gave the same character length as a punched card. This is still seen in the modern command window . HP had determined that the combination of a standard 4:3 aspect ratio with the 25 line by 80 character display that was the standard of the time required the characters to have a very high profile. HP's response was to specify a CRT with an aspect ratio designed around the desired character shape instead of the other way around. Of course, this also mandated rather high manufacturing costs as standard parts could not be used.

HP took pains to further improve the rendering of displayed characters via half-pixel positioning of individual lines within each character. Although the character cell was only 7 horizontal by 9 vertical dots, half-pixel positioning effectively doubled the horizontal resolution to 14 dots, [21] giving the characters very smooth outlines. (The initial sales literature referred to it as using a 7×9 matrix generated in a 9×15 dot character cell).

All of this resulted in an extremely easy to read display with the dot-matrix nature, and the scan lines, almost invisible.

The keyboard had flat tops, similar to the HP 9800 series desktop computers rather than the curved contours now considered to be ergonomic. It featured three keypad areas: Alphabetic, numeric, and an array of cursor positioning and editing keys somewhat similar to modern PC keyboard layouts. There were also a number of smaller function and feature control keys arrayed in two rows above the normal keypad areas. The keyboard chassis was separate from the main body, connected via a thick cable. The keyboard used a bit-paired layout (similar to that on a teleprinter machine) rather than the typewriter-paired arrangement on DEC's VT100. Although large, users loved the keyboard because "it had a key for everything".

Similar to the HP desktop computers, it had a number of F-keys (F1 through F8) placed close to the screen. Paper templates were available for some application programs to which placed legends for these keys on the keyboard. Later models arranged these across the top row, and provided for screen labels close to their respective keys. Terminal configuration in the 262X series was done entirely through the screen-labeled function keys rather than dedicated keys and through escape sequences sent from the host computer. The on-screen labeling of the eight function keys, pioneered by the HP 300 ("Amigo") computer, was one of the first applications of a hierarchical menu which allows accessing many functions with a small number of keys. This arrangement is now common on TI graphic calculators, and automated teller and gas pump machines, though no longer used in GUI user interfaces.

Internally, the electronics used a motherboard with plug-in daughter cards. The microprocessor, memory, serial interface card, and various optional functions were each on separate cards. This permitted easy field maintenance, upgrades, and reconfiguration. For example, more memory (providing larger scrollback capability) could be easily added, the serial interface could be changed from RS-232 to current loop, etc. The optional tape drives of the 2645 model were interfaced via another plug-in card. The plug-in card capability strongly resembled the later Apple II expansion architecture.

The manufacturing area was across from R&D cubicles in the Data Terminals Division in Cupertino. The testing area was dubbed "beepland" because it had racks of 500 terminals, with the end of the test ending in a beep.

The HP 2640 introduced "block mode", similar to the IBM 3270 (although the IBM 3270 did not work for ASCII standard serial communications). The escape sequences Esc-[ and Esc-] defined unprotected areas, but it didn't have to take up a visible space. It acted much like a web page, disconnected from the host until the SEND key was pressed. The fields could screen for alphabetic or numeric characters, a feature beyond Windows Forms today. This would be supported by programs such as DEL/3000 and VIEW/3000 which would map form data into runtime variables and databases. It also supported teletype character mode like a standard ASCII terminal, and did not need specialized communications like IBM.

The hardware was radically different from most "dumb" terminals in that the characters were not stored in a simple data array. To save memory, which could extend over several pages, characters were allocated as linked lists of blocks which were dynamically allocated. Display enhancements were encoded as embedded bytes in the stream. Software enhancements which did not affect the appearance such as dim or underline, but protected and unprotected fields were also coded with embedded bytes. The display hardware was capable of reading this unusual data structure. When the cost of memory came down by the 262X series, this was changed to a "parallel" structure with one bit for each enhancement code, but the logic required to emulate previous behaviors was complex. Inserting a code for underline would "propagate" to the next display enhancement, while deleting such a code would also have to be propagated to the next display byte or a cursor jump sequence was issued to jump several bytes. You could also completely turn off enhancements as well as provide protected only field enhancements. This data structure would inspire the sparse matrix data structure for the Twin spreadsheet.

The HP 2640 also introduced multiple pages of memory, much like the DOS box in Microsoft Windows today, and the page up and page down key which appears on PC keyboards.

Users learned to use the offline key to take the terminal offline, edit a line in the display buffer, and then retransmit it. This gave the effect of command line recall and editing even if the operating system did not support it. For example, when working at an operating system's command prompt, an erroneous command could quickly be corrected and re-sent without having to retype the entire line. This was possible in many terminals of the day, but the HP 2640 was smart enough to only retransmit the line from the first character typed by the user, omitting, for example, the operating system's command prompt. This was later implemented as "line mode". Another method was to paint a formatted screen in character mode with protected fields and place it into local edit mode similar to the above but the user did not know. This meant that the characters entered by the user would not be transmitted to the host until a 'special' key, typically the enter key, but other keys were also deemed special (i.e. immediate interrupt of the host) such as control y and function keys. Only the data within the unprotected areas would be transferred in this way, using a semi block mode mechanism, a sort of half way house between block mode and normal character mode, Formatted fields also meant forms could be stored in memory ( tested for and recalled locally or repainted from the host if not present), just the unprotected data areas need be sent, thereby removing the need to repaint or issue direct cursor placements in order to update the screen (TIM/3000 Air Call Computer Systems). The PCL language was PCL level 3 in an HP645/7, which was later implemented to drive Hewlett Packard's first Laserjet printer.

HP Printer Control Language shares a common non-ANSI escape sequence grammar and common sequences with HP terminals.

In-house developers ported TinyBASIC to the HP 2645A, as well as developing several games in assembler (most notably "Keep On Drivin'", Tennis and Reversi).

Plotters could also be interfaced to using HP/GL 2 with TinyBasic.

Models

HP 2621A and HP 2647A HP 2621A 2647A terminals.jpg
HP 2621A and HP 2647A

The HP 264X [22] series included several models beyond the HP 2640A.

The great over-reach was a color graphics terminal that cost more than the HP 2647 monochrome graphics workstation that sold very few units but cost a huge effort to develop.

Eventually, HP ended up selling essentially a low-cost version [28] of the HP 2640. Today, terminal emulators still implement the late 1970s feature set of these terminals on common PCs.

See also List of HP 26xx terminals (introduction, price, discontinuation)

Related Research Articles

<span class="mw-page-title-main">IBM 3270</span> Family of block-oriented display terminals and printers made by IBM

The IBM 3270 is a family of block oriented display and printer computer terminals introduced by IBM in 1971 and normally used to communicate with IBM mainframes. The 3270 was the successor to the IBM 2260 display terminal. Due to the text color on the original models, these terminals are informally known as green screen terminals. Unlike a character-oriented terminal, the 3270 minimizes the number of I/O interrupts required by transferring large blocks of data known as data streams, and uses a high speed proprietary communications interface, using coaxial cable.

<span class="mw-page-title-main">VT100</span> Computer terminal from Digital Equipment Corporation

The VT100 is a video terminal, introduced in August 1978 by Digital Equipment Corporation (DEC). It was one of the first terminals to support ANSI escape codes for cursor control and other tasks, and added a number of extended codes for special features like controlling the status lights on the keyboard. This led to rapid uptake of the ANSI standard, which became the de facto standard for hardware video terminals and later terminal emulators.

In computer science, an escape sequence is a combination of characters that has a meaning other than the literal characters contained therein; it is marked by one or more preceding characters.

<span class="mw-page-title-main">Computer terminal</span> Computer input/output device for users

A computer terminal is an electronic or electromechanical hardware device that can be used for entering data into, and transcribing data from, a computer or a computing system. Most early computers only had a front panel to input or display bits and had to be connected to a terminal to print or input text through a keyboard. Teleprinters were used as early-day hard-copy terminals and predated the use of a computer screen by decades. The computer would typically transmit a line of data which would be printed on paper, and accept a line of data from a keyboard over a serial or other interface. Starting in the mid-1970s with microcomputers such as the Sphere 1, Sol-20, and Apple I, display circuitry and keyboards began to be integrated into personal and workstation computer systems, with the computer handling character generation and outputting to a CRT display such as a computer monitor or, sometimes, a consumer TV, but most larger computers continued to require terminals.

<span class="mw-page-title-main">Function key</span> Key on a computer or terminal keyboard

A function key is a key on a computer or terminal keyboard that can be programmed to cause the operating system or an application program to perform certain actions, a form of soft key. On some keyboards/computers, function keys may have default actions, accessible on power-on.

<span class="mw-page-title-main">HP-41C</span> Hewlett-Packard handheld RPN calculator

The HP-41C series are programmable, expandable, continuous memory handheld RPN calculators made by Hewlett-Packard from 1979 to 1990. The original model, HP-41C, was the first of its kind to offer alphanumeric display capabilities. Later came the HP-41CV and HP-41CX, offering more memory and functionality.

<span class="mw-page-title-main">Tektronix 4010</span> Text and graphics computer terminals

The Tektronix 4010 series was a family of text-and-graphics computer terminals based on storage-tube technology created by Tektronix. Several members of the family were introduced during the 1970s, the best known being the 11-inch 4010 and 19-inch 4014, along with the less popular 25-inch 4016. They were widely used in the computer-aided design market in the 1970s and early 1980s.

<span class="mw-page-title-main">HP-150</span> Computer model

HP-150 was a compact, powerful and innovative computer made by Hewlett-Packard in 1983. It was based on the Intel 8088 CPU and was one of the world's earliest commercialized touch screen computers. Like other "workalike" IBM PC clones of the time, despite running customized MS-DOS versions 2.01, 2.11 and 3.20, the machine was not IBM PC DOS compatible. Its 8088 CPU, rated at 8 MHz, was faster than the 4.77 MHz CPUs used by the IBM PC of that period. Using add-on cards, main memory could be increased from 256 KB to 640 KB. However, its mainboard did not have a slot for the optional Intel 8087 math coprocessor due to space constraints. An HP-150 with an optional hard disk was called HP Touchscreen MAX.

<span class="mw-page-title-main">VT52</span> CRT-based computer terminal by Digital

The VT50 is a CRT-based computer terminal that was introduced by Digital Equipment Corporation (DEC) in July 1974. It provided a display with 12 rows and 80 columns of upper-case text, and used an expanded set of control characters and forward-only scrolling based on the earlier VT05. DEC documentation of the era refers to the terminals as the DECscope, a name that was otherwise almost never seen.

<span class="mw-page-title-main">Box-drawing characters</span> Characters for drawing frames and boxes

Box-drawing characters, also known as line-drawing characters, are a form of semigraphics widely used in text user interfaces to draw various geometric frames and boxes. These characters are characterized by being designed to be connected horizontally and/or vertically with adjacent characters, which requires proper alignment. Box-drawing characters therefore typically only work well with monospaced fonts.

<span class="mw-page-title-main">HP 200LX</span> Personal digital assistant manufactured by Hewlett-Packard

The HP 200LX Palmtop PC, also known as project Felix, is a personal digital assistant introduced by Hewlett-Packard in August 1994. It was often called a Palmtop PC, and it was notable that it was, with some minor exceptions, a DOS-compatible computer in a palmtop format, complete with a monochrome graphic display, QWERTY keyboard, serial port, and PCMCIA expansion slot. The abbreviation "LX" stood for "Lotus Expandable".

<span class="mw-page-title-main">HP 300</span>

The HP 300 "Amigo" was a computer produced by Hewlett-Packard (HP) in the late 1970s based loosely on the stack-based HP 3000, but with virtual memory for both code and data. The HP300 was cut-short from being a commercial success despite the huge engineering effort, which included HP-developed and -manufactured silicon on sapphire (SOS) processor and I/O chips.

<span class="mw-page-title-main">Soft key</span>

A soft key is a button flexibly programmable to invoke any of a number of functions rather than being associated with a single fixed function or a fixed set of functions. A softkey often takes the form of a screen-labeled function key located alongside a display device, where the button invokes a function described by the text at that moment shown adjacent to the button on the display. Soft keys are also found away from the display device, for example on the sides of cellular phones, where they are typically programmed to invoke functions such as PTT, memo, or volume control. Function keys on keyboards are a form of soft key. In contrast, a hard key is a key with dedicated function such as the keys on a number keypad.

<span class="mw-page-title-main">HP 9800 series</span>

The HP 9800 is a family of what were initially called programmable calculators and later desktop computers that were made by Hewlett-Packard, replacing their first HP 9100 calculator. It is also named "98 line". The 9830 and its successors were true computers in the modern sense of the term, complete with a powerful BASIC language interpreter.

<span class="mw-page-title-main">HP Series 80</span> 1980 Hewlett-Packard small scientific desktop computer

The Hewlett-Packard Series 80 of small scientific desktop computers was introduced in 1980, beginning with the popular HP-85 targeted at engineering and control applications. They provided the capability of the HP 9800 series desktop computers with an integrated monitor in a smaller package including storage and printer, at half the price.

<span class="mw-page-title-main">HP-16C</span> Programmable calculator produce by Hewlett-Packard

The HP-16C Computer Scientist is a programmable pocket calculator that was produced by Hewlett-Packard between 1982 and 1989. It was specifically designed for use by computer programmers, to assist in debugging. It is a member of the HP Voyager series of programmable calculators. It was the only programmer's calculator ever produced by HP, though many later HP calculators have incorporated most of the 16C's functions.

<span class="mw-page-title-main">HP 250</span> Computer by Hewlett-Packard

The HP 250 was a multiuser business computer by Hewlett-Packard running HP 250 BASIC language as its OS with access to HP's IMAGE database management. It was produced by the General Systems Division (GSD), but was a major repackaging of desktop workstation HP 9835 from the HP 9800 series which had been sold in small business configurations. The HP 9835's processor was initially used in the first HP 250s.

<span class="mw-page-title-main">DC100</span> Magnetic tape storage format

DC100 is a tape cartridge format that was co-developed by Hewlett-Packard and 3M. Introduced in mid-1976, it was developed as a data storage mechanism for the HP 9820 programmable calculator. The DC100 tape cartridge was a scaled-down version of the DC300 cartridge pioneered by 3M, and represents an early version of what is now referred to as the QIC Mini Cartridge. 3M was the exclusive source of DC100 tapes, while drives were manufactured by 3M and several third parties.

<span class="mw-page-title-main">Tektronix 4050</span>

The Tektronix 4050 is a series of three desktop computers produced by Tektronix in the late 1970s through the early 1980s. The display technology is similar to the Tektronix 4010 terminal, using a storage tube display to avoid the need for video RAM. They are all-in-one designs with the display, keyboard, CPU and DC300 tape drive in a single desktop case. They also include a GPIB parallel bus interface for controlling lab and test equipment as well as connecting to external peripherals. A simple operating system and BASIC interpreter are included in ROM.

In computing HP Roman is a family of character sets consisting of HP Roman Extension, HP Roman-8, HP Roman-9 and several variants. Originally introduced by Hewlett-Packard around 1978, revisions and adaptations were published several times up to 1999. The 1985 revisions were later standardized as IBM codepages 1050 and 1051. Supporting many European languages, the character sets were used by various HP workstations, terminals, calculators as well as many printers, also from third-parties.

References

  1. Doub, James A. (June 1975). "Cost-Effective CRT Terminal is first of a family" (PDF). Hewlett-Packard Journal. 26 (10): 2–5. ISSN   0018-1153.
  2. Anderson, Tom (15 October 1974). "2640 Press Tour" (PDF). Data Systems Newsletter. 1 (17). Hewlett-Packard: 4.
  3. Hewlett-Packard (1 November 1974). "Announcing the HP 2640A CRT Terminal" (PDF). Data Systems Newsletter. 2 (1). Hewlett-Packard: 8–9.
  4. "Crt Terminal". Datamation. 20 (11): 146. November 1974.
  5. Hewlett-Packard (19 September 1975). "Introducing the HP 2644A Mini DataStation" (PDF). Data Systems Newsletter. 2 (24). Hewlett-Packard: 3.
  6. Elliott, Jim (1 August 1976). "DTD Introduces the 2640B" (PDF). Computer Systems Newsletter. 1 (4). Hewlett-Packard: 8.
  7. Elliott, Jim (1 August 1976). "Introducing the 2640S Swedish/Finnish and 2640N Danish/Norwegian International Display Terminals" (PDF). Computer Systems Newsletter. 1 (4). Hewlett-Packard: 8.
  8. Anderson, Tom (1 December 1976). "2640A and 2644A Being Discontinued" (PDF). Computer Systems Newsletter. 2 (3). Hewlett-Packard: 17.
  9. Flock, Carl (1 February 1977). "No More—2640A or 2644A" (PDF). Computer Systems Newsletter. 2 (6). Hewlett-Packard: 10.
  10. Flock, Carl (1 July 1981). "Top CRT Terminal Nears Retirement" (PDF). Computer News. 6 (16). Hewlett-Packard: 16.
  11. "Advertisement". Computerworld. IDG Enterprise: 14–15. 6 December 1976. ISSN   0010-4841.
  12. Hewlett-Packard (1 September 1976). "2645A Display Station Announced" (PDF). Computer Systems Newsletter. 1 (6). Hewlett-Packard: 12–17.
  13. Hewlett-Packard (September 1976). "Hewlett-Packard Announces the 2645 [advertisement]". Datamation. 22 (9): 45–47.
  14. Flock, Carl (15 November 1976). "The 2641A APL Display Station Is Here!" (PDF). Computer Systems Newsletter. 2 (2). Hewlett-Packard: 12–17.
  15. Goodreau, Dave (1 April 1977). "Unveiling the 2645R!" (PDF). Computer Systems Newsletter. 2 (10). Hewlett-Packard: 16.
  16. Elliott, Jim (15 July 1977). "Hewlett-Packard Introduces First Graphics CRT Terminal" (PDF). Computer Systems Newsletter. 2 (17). Hewlett-Packard: 13–18.
  17. Ferguson, Rich (15 May 1978). "Introducing The 2647A Intelligent Graphics Terminal" (PDF). Computer Systems Newsletter. 3 (13). Hewlett-Packard: 8–11.
  18. Cox, Jeff (1 October 1980). "Announcing the HP 2642A" (PDF). Computer News. 5 (22). Hewlett-Packard: 15.
  19. Washington, Ed (15 June 1982). "Introducing the HP 2647F Intelligent Graphics Terminal" (PDF). Computer News. 7 (15). Hewlett-Packard: 24.
  20. Bebb, Bob (15 May 1984). "HP 264X terminals to be obsoleted" (PDF). Computer News. 9 (13). Hewlett-Packard: 23.
  21. Roy, Jean-Claude (June 1975). "A High-Resolution Raster Scan Display" (PDF). Hewlett-Packard Journal. 26 (10): 11–15. ISSN   0018-1153.
  22. "264X documentation". HP Computer Museum. Retrieved 2007-11-21.
  23. Nordman, Robert G.; Richard L. Smith; Louis A. Witkin (May 1976). "New CRT Terminal Has Magnetic Tape Storage for Expanded Capability" (PDF). Hewlett-Packard Journal. 27 (9): 2–8. ISSN   0018-1153.
  24. Dickinson, Peter D. (January 1978). "Versatile Low-Cost Graphics Terminal Is Designed for Ease of Use" (PDF). Hewlett-Packard Journal. 29 (5): 2–6. ISSN   0018-1153.
  25. "262X documentation". HP Computer Museum. Retrieved 2007-11-21.
  26. Staas, Gary C. (March 1981). "New Display Station Offers Multiple Screen Windows and Dual Data Communications Ports" (PDF). Hewlett-Packard Journal. 32 (3): 3–7. ISSN   0018-1153.
  27. "2382A documentation". HP Computer Museum. Retrieved 2007-11-21.
  28. Chapuis, Jean-Louis; Michèle Prieur (April 1985). "Low-Cost, Compact, Block-Mode Computer Terminal" (PDF). Hewlett-Packard Journal. 36 (4): 4–7. ISSN   0018-1153.