Hadwiger conjecture (combinatorial geometry)

Last updated
A triangle can be covered by three smaller copies of itself; a square requires four smaller copies Hadwiger covering.svg
A triangle can be covered by three smaller copies of itself; a square requires four smaller copies
Unsolved problem in mathematics:

Can every -dimensional convex body be covered by smaller copies of itself?

Contents

In combinatorial geometry, the Hadwiger conjecture states that any convex body in n-dimensional Euclidean space can be covered by 2n or fewer smaller bodies homothetic with the original body, and that furthermore, the upper bound of 2n is necessary if and only if the body is a parallelepiped. There also exists an equivalent formulation in terms of the number of floodlights needed to illuminate the body.

The Hadwiger conjecture is named after Hugo Hadwiger, who included it on a list of unsolved problems in 1957; it was, however, previously studied by Levi (1955) and independently, Gohberg & Markus (1960). Additionally, there is a different Hadwiger conjecture concerning graph coloring—and in some sources the geometric Hadwiger conjecture is also called the Levi–Hadwiger conjecture or the Hadwiger–Levi covering problem.

The conjecture remains unsolved even in three dimensions, though the two dimensional case was resolved by Levi (1955).

Formal statement

Formally, the Hadwiger conjecture is: If K is any bounded convex set in the n-dimensional Euclidean space Rn, then there exists a set of 2n scalars si and a set of 2n translation vectors vi such that all si lie in the range 0 < si < 1, and

Furthermore, the upper bound is necessary iff K is a parallelepiped, in which case all 2n of the scalars may be chosen to be equal to 1/2.

Alternate formulation with illumination

As shown by Boltyansky, the problem is equivalent to one of illumination: how many floodlights must be placed outside of an opaque convex body in order to completely illuminate its exterior? For the purposes of this problem, a body is only considered to be illuminated if for each point of the boundary of the body, there is at least one floodlight that is separated from the body by all of the tangent planes intersecting the body on this point; thus, although the faces of a cube may be lit by only two floodlights, the planes tangent to its vertices and edges cause it to need many more lights in order for it to be fully illuminated. For any convex body, the number of floodlights needed to completely illuminate it turns out to equal the number of smaller copies of the body that are needed to cover it. [1]

Examples

As shown in the illustration, a triangle may be covered by three smaller copies of itself, and more generally in any dimension a simplex may be covered by n + 1 copies of itself, scaled by a factor of n/(n + 1). However, covering a square by smaller squares (with parallel sides to the original) requires four smaller squares, as each one can cover only one of the larger square's four corners. In higher dimensions, covering a hypercube or more generally a parallelepiped by smaller homothetic copies of the same shape requires a separate copy for each of the vertices of the original hypercube or parallelepiped; because these shapes have 2n vertices, 2n smaller copies are necessary. This number is also sufficient: a cube or parallelepiped may be covered by 2n copies, scaled by a factor of 1/2. Hadwiger's conjecture is that parallelepipeds are the worst case for this problem, and that any other convex body may be covered by fewer than 2n smaller copies of itself. [1]

Known results

The two-dimensional case was settled by Levi (1955): every two-dimensional bounded convex set may be covered with four smaller copies of itself, with the fourth copy needed only in the case of parallelograms. However, the conjecture remains open in higher dimensions except for some special cases. The best known asymptotic upper bound on the number of smaller copies needed to cover a given body is [2]

where is a positive constant. For small the upper bound of established by Lassak (1988) is better than the asymptotic one. In three dimensions it is known that 16 copies always suffice, but this is still far from the conjectured bound of 8 copies. [1]

The conjecture is known to hold for certain special classes of convex bodies, including, in dimension three, centrally symmetric polyhedra and bodies of constant width. [1] The number of copies needed to cover any zonotope (other than a parallelepiped) is at most , while for bodies with a smooth surface (that is, having a single tangent plane per boundary point), at most smaller copies are needed to cover the body, as Levi already proved. [1]

See also

Notes

Related Research Articles

<span class="mw-page-title-main">Hugo Hadwiger</span> Swiss mathematician (1908–1981)

Hugo Hadwiger was a Swiss mathematician, known for his work in geometry, combinatorics, and cryptography.

<span class="mw-page-title-main">Cubic graph</span> Graph with all vertices of degree 3

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

<span class="mw-page-title-main">Net (polyhedron)</span> Edge-joined polygons which fold into a polyhedron

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span> Unproven generalization of the four-color theorem

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

There are several conjectures known as the Hadwiger conjecture or Hadwiger's conjecture. They include:

<span class="mw-page-title-main">Hadwiger–Nelson problem</span> Mathematical problem

In geometric graph theory, the Hadwiger–Nelson problem, named after Hugo Hadwiger and Edward Nelson, asks for the minimum number of colors required to color the plane such that no two points at distance 1 from each other have the same color. The answer is unknown, but has been narrowed down to one of the numbers 5, 6 or 7. The correct value may depend on the choice of axioms for set theory.

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

<span class="mw-page-title-main">Borsuk's conjecture</span> Can every bounded subset of Rn be partitioned into (n+1) smaller diameter sets?

The Borsuk problem in geometry, for historical reasons incorrectly called Borsuk's conjecture, is a question in discrete geometry. It is named after Karol Borsuk.

<span class="mw-page-title-main">Circle packing theorem</span> Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

The covering problem of Rado is an unsolved problem in geometry concerning covering planar sets by squares. It was formulated in 1928 by Tibor Radó and has been generalized to more general shapes and higher dimensions by Richard Rado.

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

<span class="mw-page-title-main">Smoothed octagon</span>

The smoothed octagon is a region in the plane found by Karl Reinhardt in 1934 and conjectured by him to have the lowest maximum packing density of the plane of all centrally symmetric convex shapes. It was also independently discovered by Kurt Mahler in 1947. It is constructed by replacing the corners of a regular octagon with a section of a hyperbola that is tangent to the two sides adjacent to the corner and asymptotic to the sides adjacent to these.

<span class="mw-page-title-main">Albertson conjecture</span> Relation between graph coloring and crossings

In combinatorial mathematics, the Albertson conjecture is an unproven relationship between the crossing number and the chromatic number of a graph. It is named after Michael O. Albertson, a professor at Smith College, who stated it as a conjecture in 2007; it is one of his many conjectures in graph coloring theory. The conjecture states that, among all graphs requiring colors, the complete graph is the one with the smallest crossing number. Equivalently, if a graph can be drawn with fewer crossings than , then, according to the conjecture, it may be colored with fewer than colors.

<span class="mw-page-title-main">Sumner's conjecture</span>

Sumner's conjecture states that every orientation of every -vertex tree is a subgraph of every -vertex tournament. David Sumner, a graph theorist at the University of South Carolina, conjectured in 1971 that tournaments are universal graphs for polytrees. The conjecture was proven for all large by Daniela Kühn, Richard Mycroft, and Deryk Osthus.

<span class="mw-page-title-main">Keller's conjecture</span> Geometry problem on tiling by hypercubes

In geometry, Keller's conjecture is the conjecture that in any tiling of n-dimensional Euclidean space by identical hypercubes, there are two hypercubes that share an entire (n − 1)-dimensional face with each other. For instance, in any tiling of the plane by identical squares, some two squares must share an entire edge, as they do in the illustration.

<span class="mw-page-title-main">Frankl–Rödl graph</span>

In graph theory and computational complexity theory, a Frankl–Rödl graph is a graph defined by connecting pairs of vertices of a hypercube that are at a specified even distance from each other. The graphs of this type are parameterized by the dimension of the hypercube and by the distance between adjacent vertices.

In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes.

References