Hartogs's extension theorem

Last updated

In the theory of functions of several complex variables, Hartogs's extension theorem is a statement about the singularities of holomorphic functions of several variables. Informally, it states that the support of the singularities of such functions cannot be compact, therefore the singular set of a function of several complex variables must (loosely speaking) 'go off to infinity' in some direction. More precisely, it shows that an isolated singularity is always a removable singularity for any analytic function of n > 1 complex variables. A first version of this theorem was proved by Friedrich Hartogs, [1] and as such it is known also as Hartogs's lemma and Hartogs's principle: in earlier Soviet literature, [2] it is also called the Osgood–Brown theorem, acknowledging later work by Arthur Barton Brown and William Fogg Osgood. [3] This property of holomorphic functions of several variables is also called Hartogs's phenomenon : however, the locution "Hartogs's phenomenon" is also used to identify the property of solutions of systems of partial differential or convolution equations satisfying Hartogs-type theorems. [4]

Contents

Historical note

The original proof was given by Friedrich Hartogs in 1906, using Cauchy's integral formula for functions of several complex variables. [1] Today, usual proofs rely on either the Bochner–Martinelli–Koppelman formula or the solution of the inhomogeneous Cauchy–Riemann equations with compact support. The latter approach is due to Leon Ehrenpreis who initiated it in the paper ( Ehrenpreis 1961 ). Yet another very simple proof of this result was given by Gaetano Fichera in the paper ( Fichera 1957 ), by using his solution of the Dirichlet problem for holomorphic functions of several variables and the related concept of CR-function: [5] later he extended the theorem to a certain class of partial differential operators in the paper ( Fichera 1983 ), and his ideas were later further explored by Giuliano Bratti. [6] Also the Japanese school of the theory of partial differential operators worked much on this topic, with notable contributions by Akira Kaneko. [7] Their approach is to use Ehrenpreis's fundamental principle.

Hartogs's phenomenon

For example, in two variables, consider the interior domain

in the two-dimensional polydisk where

Theorem Hartogs (1906): Any holomorphic function on can be analytically continued to Namely, there is a holomorphic function on such that on

Such a phenomenon is called Hartogs's phenomenon, which lead to the notion of this Hartogs's extension theorem and the domain of holomorphy.

Formal statement and proof

Let f be a holomorphic function on a set G \ K, where G is an open subset of Cn (n ≥ 2) and K is a compact subset of G. If the complement G \ K is connected, then f can be extended to a unique holomorphic function F on G. [8]

Ehrenpreis' proof is based on the existence of smooth bump functions, unique continuation of holomorphic functions, and the Poincaré lemma the last in the form that for any smooth and compactly supported differential (0,1)-form ω on Cn with ω = 0, there exists a smooth and compactly supported function η on Cn with η = ω. The crucial assumption n ≥ 2 is required for the validity of this Poincaré lemma; if n = 1 then it is generally impossible for η to be compactly supported. [9]

The ansatz for F is φ fv for smooth functions φ and v on G; such an expression is meaningful provided that φ is identically equal to zero where f is undefined (namely on K). Furthermore, given any holomorphic function on G which is equal to f on some open set, unique continuation (based on connectedness of G \ K) shows that it is equal to f on all of G \ K.

The holomorphicity of this function is identical to the condition v = fφ. For any smooth function φ, the differential (0,1)-form fφ is -closed. Choosing φ to be a smooth function which is identically equal to zero on K and identically equal to one on the complement of some compact subset L of G, this (0,1)-form additionally has compact support, so that the Poincaré lemma identifies an appropriate v of compact support. This defines F as a holomorphic function on G; it only remains to show (following the above comments) that it coincides with f on some open set.

On the set Cn \ L, v is holomorphic since φ is identically constant. Since it is zero near infinity, unique continuation applies to show that it is identically zero on some open subset of G \ L. [10] Thus, on this open subset, F equals f and the existence part of Hartog's theorem is proved. Uniqueness is automatic from unique continuation, based on connectedness of G.

Counterexamples in dimension one

The theorem does not hold when n = 1. To see this, it suffices to consider the function f(z) = z−1, which is clearly holomorphic in C \ {0}, but cannot be continued as a holomorphic function on the whole of C. Therefore, the Hartogs's phenomenon is an elementary phenomenon that highlights the difference between the theory of functions of one and several complex variables.

Notes

  1. 1 2 See the original paper of Hartogs (1906) and its description in various historical surveys by Osgood (1966 , pp. 56–59), Severi (1958 , pp. 111–115) and Struppa (1988 , pp. 132–134). In particular, in this last reference on p. 132, the Author explicitly writes :-"As it is pointed out in the title of ( Hartogs 1906 ), and as the reader shall soon see, the key tool in the proof is the Cauchy integral formula ".
  2. See for example Vladimirov (1966 , p. 153), which refers the reader to the book of Fuks (1963 , p. 284) for a proof (however, in the former reference it is incorrectly stated that the proof is on page 324).
  3. See Brown (1936) and Osgood (1929).
  4. See Fichera (1983) and Bratti (1986a) ( Bratti 1986b ).
  5. Fichera's proof as well as his epoch making paper ( Fichera 1957 ) seem to have been overlooked by many specialists of the theory of functions of several complex variables: see Range (2002) for the correct attribution of many important theorems in this field.
  6. See Bratti (1986a) ( Bratti 1986b ).
  7. See his paper ( Kaneko 1973 ) and the references therein.
  8. Hörmander 1990, Theorem 2.3.2.
  9. Hörmander 1990, p. 30.
  10. Any connected component of Cn \ L must intersect G \ L in a nonempty open set. To see the nonemptiness, connect an arbitrary point p of Cn \ L to some point of L via a line. The intersection of the line with Cn \ L may have many connected components, but the component containing p gives a continuous path from p into G \ L.

Related Research Articles

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

<span class="mw-page-title-main">Guido Fubini</span> Italian mathematician

Guido Fubini was an Italian mathematician, known for Fubini's theorem and the Fubini–Study metric.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

<span class="mw-page-title-main">Morera's theorem</span> Integral criterion for holomorphy

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

<span class="mw-page-title-main">Giuseppe Vitali</span> Italian mathematician

Giuseppe Vitali was an Italian mathematician who worked in several branches of mathematical analysis. He gives his name to several entities in mathematics, most notably the Vitali set with which he was the first to give an example of a non-measurable subset of real numbers.

<span class="mw-page-title-main">Francesco Severi</span> Italian mathematician (1879–1961)

Francesco Severi was an Italian mathematician. He was the chair of the committee on Fields Medal on 1936, at the first delivery.

In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA and also published in the book Problems in the Theory of Dispersion Relations. Further proofs and generalizations of the theorem were given by Res Jost and Harry Lehmann (1957), Freeman Dyson (1958), H. Epstein (1960), and by other researchers.

In mathematics, precisely in the theory of functions of several complex variables, a pluriharmonic function is a real valued function which is locally the real part of a holomorphic function of several complex variables. Sometimes such a function is referred to as n-harmonic function, where n ≥ 2 is the dimension of the complex domain where the function is defined. However, in modern expositions of the theory of functions of several complex variables it is preferred to give an equivalent formulation of the concept, by defining pluriharmonic function a complex valued function whose restriction to every complex line is a harmonic function with respect to the real and imaginary part of the complex line parameter.

<span class="mw-page-title-main">Giacinto Morera</span> Italian engineer and mathematician

Giacinto Morera, was an Italian engineer and mathematician. He is known for Morera's theorem in the theory of functions of a complex variable and for his work in the theory of linear elasticity.

In mathematics, especially several complex variables, an analytic polyhedron is a subset of the complex space Cn of the form

<span class="mw-page-title-main">Gaetano Fichera</span> Italian mathematician

Gaetano Fichera was an Italian mathematician, working in mathematical analysis, linear elasticity, partial differential equations and several complex variables. He was born in Acireale, and died in Rome.

Carlo Severini was an Italian mathematician: he was born in Arcevia and died in Pesaro. Severini, independently from Dmitri Fyodorovich Egorov, proved and published earlier a proof of the theorem now known as Egorov's theorem.

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

<span class="mw-page-title-main">Enzo Martinelli</span> Italian mathematician (1911–1999)

Enzo Martinelli was an Italian mathematician, working in the theory of functions of several complex variables: he is best known for his work on the theory of integral representations for holomorphic functions of several variables, notably for discovering the Bochner–Martinelli formula in 1938, and for his work in the theory of multi-dimensional residues.

In mathematics, the Bochner–Martinelli formula is a generalization of the Cauchy integral formula to functions of several complex variables, introduced by Enzo Martinelli and Salomon Bochner.

<span class="mw-page-title-main">Giovanni Battista Rizza</span> Italian mathematician (1924–2018)

Giovanni Battista Rizza, officially known as Giambattista Rizza, was an Italian mathematician, working in the fields of complex analysis of several variables and in differential geometry: he is known for his contribution to hypercomplex analysis, notably for extending Cauchy's integral theorem and Cauchy's integral formula to complex functions of a hypercomplex variable, the theory of pluriharmonic functions and for the introduction of the now called Rizza manifolds.

The Andreotti–Norguet formula, first introduced by Aldo Andreotti and François Norguet, is a higher–dimensional analogue of Cauchy integral formula for expressing the derivatives of a holomorphic function. Precisely, this formula express the value of the partial derivative of any multiindex order of a holomorphic function of several variables, in any interior point of a given bounded domain, as a hypersurface integral of the values of the function on the boundary of the domain itself. In this respect, it is analogous and generalizes the Bochner–Martinelli formula, reducing to it when the absolute value of the multiindex order of differentiation is 0. When considered for functions of n = 1 complex variables, it reduces to the ordinary Cauchy formula for the derivative of a holomorphic function: however, when n > 1, its integral kernel is not obtainable by simple differentiation of the Bochner–Martinelli kernel.

<span class="mw-page-title-main">Luigi Amerio</span> Italian electrical engineer and mathematician

Luigi Amerio, was an Italian electrical engineer and mathematician. He is known for his work on almost periodic functions, on Laplace transforms in one and several dimensions, and on the theory of elliptic partial differential equations.

<span class="mw-page-title-main">Pia Nalli</span> Italian mathematician

Pia Maria Nalli was an Italian mathematician known for her work on the summability of Fourier series, on Morera's theorem for analytic functions of several variables and for finding the solution to the Fredholm integral equation of the third kind for the first time. Her research interests ranged from algebraic geometry to functional analysis and tensor analysis; she was a speaker at the 1928 International Congress of Mathematicians.

Carlo Miranda was an Italian mathematician, working on mathematical analysis, theory of elliptic partial differential equations and complex analysis: he is known for giving the first proof of the Poincaré–Miranda theorem, for Miranda's theorem in complex analysis, and for writing an influential monograph in the theory of elliptic partial differential equations.

References

Historical references

  • Fuks, B. A. (1963), Introduction to the Theory of Analytic Functions of Several Complex Variables, Translations of Mathematical Monographs, vol. 8, Providence, RI: American Mathematical Society, pp. vi+374, ISBN   9780821886441, MR   0168793, Zbl   0138.30902 .
  • Osgood, William Fogg (1966) [1913], Topics in the theory of functions of several complex variables (unabridged and corrected ed.), New York: Dover, pp. IV+120, JFM   45.0661.02, MR   0201668, Zbl   0138.30901 .
  • Range, R. Michael (2002), "Extension phenomena in multidimensional complex analysis: correction of the historical record", The Mathematical Intelligencer , 24 (2): 4–12, doi:10.1007/BF03024609, MR   1907191, S2CID   120531925 . A historical paper correcting some inexact historical statements in the theory of holomorphic functions of several variables, particularly concerning contributions of Gaetano Fichera and Francesco Severi.
  • Severi, Francesco (1931), "Risoluzione del problema generale di Dirichlet per le funzioni biarmoniche", Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, series 6 (in Italian), 13: 795–804, JFM   57.0393.01, Zbl   0002.34202 . This is the first paper where a general solution to the Dirichlet problem for pluriharmonic functions is given for general real analytic data on a real analytic hypersurface. A translation of the title reads as:-"Solution of the general Dirichlet problem for biharmonic functions".
  • Severi, Francesco (1958), Lezioni sulle funzioni analitiche di più variabili complesse – Tenute nel 1956–57 all'Istituto Nazionale di Alta Matematica in Roma (in Italian), Padova: CEDAM – Casa Editrice Dott. Antonio Milani, Zbl   0094.28002 . A translation of the title is:-"Lectures on analytic functions of several complex variables – Lectured in 1956–57 at the Istituto Nazionale di Alta Matematica in Rome". This book consist of lecture notes from a course held by Francesco Severi at the Istituto Nazionale di Alta Matematica (which at present bears his name), and includes appendices of Enzo Martinelli, Giovanni Battista Rizza and Mario Benedicty.
  • Struppa, Daniele C. (1988), "The first eighty years of Hartogs' theorem", Seminari di Geometria 1987–1988, Bologna: Università degli Studi di Bologna – Dipartimento di Matematica, pp. 127–209, MR   0973699, Zbl   0657.35018 .
  • Vladimirov, V. S. (1966), Ehrenpreis, L. (ed.), Methods of the theory of functions of several complex variables. With a foreword of N.N. Bogolyubov, Cambridge-London: The M.I.T. Press, pp. XII+353, MR   0201669, Zbl   0125.31904 (Zentralblatt review of the original Russian edition). One of the first modern monographs on the theory of several complex variables, being different from other ones of the same period due to the extensive use of generalized functions.

Scientific references